3,915 research outputs found

    Accurate prediction of heat of formation by combining Hartree-Fock/density functional theory calculation with linear regression correction approach

    Get PDF
    A linear regression correction (LRC) approach was developed to account for the electron correlation energy missing in Hartree-Fock (HF) calculation. This method was applied to evaluate the standard heats of formation of 180 small-sized to medium-sized organic molecules at 298.15 K. The descriptors in the LRC scheme are the number of lone-pair electrons, bonding electrons and inner layer electrons in molecules, and the number of unpaired electrons in ground state atoms. It is observed that the large systematic deviations for the calculated heat of formation are reduced drastically, in particular, for the HF results.published_or_final_versio

    Spin- and energy relaxation of hot electrons at GaAs surfaces

    Full text link
    The mechanisms for spin relaxation in semiconductors are reviewed, and the mechanism prevalent in p-doped semiconductors, namely spin relaxation due to the electron-hole exchange interaction, is presented in some depth. It is shown that the solution of Boltzmann-type kinetic equations allows one to obtain quantitative results for spin relaxation in semiconductors that go beyond the original Bir-Aronov-Pikus relaxation-rate approximation. Experimental results using surface sensitive two-photon photoemission techniques show that the spin relaxation-time of electrons in p-doped GaAs at a semiconductor/metal surface is several times longer than the corresponding bulk spin relaxation-times. A theoretical explanation of these results in terms of the reduced density of holes in the band-bending region at the surface is presented.Comment: 33 pages, 12 figures; earlier submission replaced by corrected and expanded version; eps figures now included in the tex

    Detecting topological currents in graphene superlattices

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this record.Topological materials may exhibit Hall-like currents flowing transversely to the applied electric field even in the absence of a magnetic field. In graphene superlattices, which have broken inversion symmetry, topological currents originating from graphene's two valleys are predicted to flow in opposite directions and combine to produce long-range charge neutral flow. We observed this effect as a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several micrometers away from the nominal current path. Locally, topological currents are comparable in strength with the applied current, indicating large valley-Hall angles. The long-range character of topological currents and their transistor-like control by means of gate voltage can be exploited for information processing based on valley degrees of freedom.This work was supported by the European Research Council, the Royal Society, the National Science Foundation (STC Center for Integrated Quantum Materials, grant DMR‐1231319), Engineering & Physical Research Council (UK), the Office of Naval Research and the Air Force Office of Scientific Research

    ‘The phoenix that always rises from the ashes’: an exploratory qualitative study of the experiences of an initiative informed by principles of psychological first aid following the Beirut blast

    Get PDF
    BACKGROUND: On 4 August 2020, an explosion occurred in Beirut, Lebanon. Hundreds of people were killed, thousands injured and displaced. An initiative was rapidly initiated to provide remote support informed by psychological first aid for the mental health of Lebanese young adults affected by the blast. However, little is known about recipients’ experiences of such initiatives. OBJECTIVES: This study aimed to qualitatively explore the experiences of supporters and recipients in the community-led initiative following the blast. METHOD: We recruited a diverse sample of four supporters and four Lebanese recipients who took part in the Beirut initiative. Semi-structured interviews were conducted with participants. Reflexive thematic analysis was used to analyse the qualitative data. RESULTS: We developed five themes from the qualitative interviews, which highlighted ideas around accessibility, alienation, the relationship, elements of the safe space created by the initiative, and unmet needs and areas for improvement. Recipients described the detrimental impact of the blast on their mental health within the Lebanese context and beyond. Recipients and supporters elucidated complex experiences of the support and its impact. CONCLUSIONS: Our findings suggest remote support has the potential to be acceptable for young adults in Lebanon. Further research into support informed by psychological first aid after similar crisis events is warranted

    Hierarchical information clustering by means of topologically embedded graphs

    Get PDF
    We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and analyzing the network structure. For a planar embedding, this method provides both the intra-cluster hierarchy, which describes the way clusters are composed, and the inter-cluster hierarchy which describes how clusters gather together. We discuss performance, robustness and reliability of this method by first investigating several artificial data-sets, finding that it can outperform significantly other established approaches. Then we show that our method can successfully differentiate meaningful clusters and hierarchies in a variety of real data-sets. In particular, we find that the application to gene expression patterns of lymphoma samples uncovers biologically significant groups of genes which play key-roles in diagnosis, prognosis and treatment of some of the most relevant human lymphoid malignancies.Comment: 33 Pages, 18 Figures, 5 Table

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    Identification, Characterization, and Expression of a Novel P450 Gene Encoding CYP6AE25 from the Asian Corn Borer, Ostrinia furnacalis

    Get PDF
    An allele of the cytochrome P450 gene, CYP6AE14, named CYP6AE25 (GenBank accession no. EU807990) was isolated from the Asian com borer, Ostrinia fumacalis (Guenée) (Lepidoptera: Pyralidae) by RT-PCR. The cDNA sequence of CYP6AE25 is 2315 bp in length and contains a 1569 nucleotides open reading frame encoding a putative protein with 523 amino acid residues and a predicted molecular weight of 59.95 kDa and a theoretical pI of 8.31. The putative protein contains the classic heme-binding sequence motif F××G×××C×G (residues 451–460) conserved among all P450 enzymes as well as other characteristic motifs of all cytochrome P450s. It shares 52% identity with the previously published sequence of CYP6AE14 (GenBank accession no. DQ986461) from Helicoverpa armigera. Phylogenetic analysis of amino acid sequences from members of various P450 families indicated that CYP6AE25 has a closer phylogenetic relationship with CYP6AE14 and CYP6B1 that are related to metabolism of plant allelochemicals, CYP6D1 which is related to pyrethroid resistance and has a more distant relationship to CYP302A1 and CYP307A1 which are related to synthesis of the insect molting hormones. The expression level of the gene in the adults and immature stages of O. furnacalis by quantitative real-time PCR revealed that CYP6AE25 was expressed in all life stages investigated. The mRNA expression level in 3rd instar larvae was 12.8- and 2.97-fold higher than those in pupae and adults, respectively. The tissue specific expression level of CYP6AE25 was in the order of midgut, malpighian tube and fatty body from high to low but was absent in ovary and brain. The analysis of the CYP6AB25 gene using bioinformatic software is discussed

    Dominant features in three-dimensional turbulence structure: comparison of non-uniform accelerating and decelerating flows

    Get PDF
    The results are presented from an experimental study to investigate three-dimensional turbulence structure profiles, including turbulence intensity and Reynolds stress, of different non-uniform open channel flows over smooth bed in subcritical flow regime. In the analysis, the uniform flow profiles have been used to compare with those of the non-uniform flows to investigate their time-averaged spatial flow turbulence structure characteristics. The measured non-uniform velocity profiles are used to verify the von Karman constant κ and to estimate sets of log-law integration constant B r and wake parameter П, where their findings are also compared with values from previous studies. From κ, B r and П findings, it has been found that the log-wake law can sufficiently represent the non-uniform flow in its non-modified form, and all κ, B r and П follow universal rules for different bed roughness conditions. The non-uniform flow experiments also show that both the turbulence intensity and Reynolds stress are governed well by exponential pressure gradient parameter β equations. Their exponential constants are described by quadratic functions in the investigated β range. Through this experimental study, it has been observed that the decelerating flow shows higher empirical constants, in both the turbulence intensity and Reynolds stress compared to the accelerating flow. The decelerating flow also has stronger dominance to determine the flow non-uniformity, because it presents higher Reynolds stress profile than uniform flow, whereas the accelerating flow does not

    Quantification of radial arterial pulse characteristics change during exercise and recovery

    Get PDF
    It is physiologically important to understand the arterial pulse waveform characteristics change during exercise and recovery. However, there is a lack of a comprehensive investigation. This study aimed to provide scientific evidence on the arterial pulse characteristics change during exercise and recovery. Sixty-five healthy subjects were studied. The exercise loads were gradually increased from 0 to 125 W for female subjects and to 150 W for male subjects. Radial pulses were digitally recorded during exercise and 4-min recovery. Four parameters were extracted from the raw arterial pulse waveform, including the pulse amplitude, width, pulse peak and dicrotic notch time. Five parameters were extracted from the normalized radial pulse waveform, including the pulse peak and dicrotic notch position, pulse Area, Area1 and Area2 separated by notch point. With increasing loads during exercise, the raw pulse amplitude increased significantly with decreased pulse period, reduced peak and notch time. From the normalized pulses, the pulse Area, pulse Area1 and Area2 decreased, respectively, from 38 ± 4, 61 ± 5 and 23 ± 5 at rest to 34 ± 4, 52 ± 6 and 13 ± 5 at 150-W exercise load. During recovery, an opposite trend was observed. This study quantitatively demonstrated significant changes of radial pulse characteristics during different exercise loads and recovery phases

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion
    corecore