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ABSTRACT                                                                             

Systemic Sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis 

of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting 

frequently in severe disability and high mortality. Although the etiology of SSc is unknown and 

the detailed mechanisms responsible for the fibrotic process have not been fully elucidated one 

important observation from a large U.S. population study was the demonstration of a late onset 

of SSc with a peak incidence between 45 and 54 years of age in African-American females and 

between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc 

as a disease of aging, the possibility that senescence changes in the cellular elements responsible 

for its development may play a role has not been thoroughly examined. The process of cellular 

senescence is extremely complex and the mechanisms, molecular events, and signaling pathways 

involved have not been fully elucidated, however, there is strong evidence to support the concept 

that oxidative stress caused by the excessive generation of reactive oxygen species may be one 

important mechanism involved. On the other hand, numerous studies have implicated oxidative 

stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative 

stress induces cellular senescence and that the molecular events associated with this complex 

process play an important role  in the fibrotic and fibroproliferative vasculopathy characteristic 

of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in 

SSc pathogenesis will be reviewed.  
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INTRODUCTION                                                             

Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology characterized 

by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative 

vasculopathy resulting frequently in functional disability and high mortality [1-3]. The 

pathogenesis of SSc is complex and despite numerous studies that have examined its intricate 

picture, the exact mechanisms involved in the severe cutaneous and systemic fibrotic process 

have not been fully elucidated [4-7]. One important demographic feature identified in a large SSc 

population is that SSc disease onset and its peak incidence occur between the ages of 45 and 54 

years for African American women and between the ages of 65 and 74 years for white women 

[8]. The reasons for the late onset and higher frequency of SSc in individuals older than 45 years 

of age are not known and have not been examined in detail. Although it is not appropriate to 

consider SSc as a disease of aging, the possible role of cellular senescence in SSc pathogenesis 

should be considered as an important factor. Among the reactions or pathways that may be 

involved in this process there is strong evidence that oxidative stress mediated by an excessive 

generation of reactive oxygen species (ROS) plays a crucial role. We will review here recent 

experimental evidence supporting the participation of cellular senescence and oxidative stress in 

SSc pathogenesis emphasizing the potential role of oxidative stress in the fibrotic process that is 

the hallmark of SSc. We will also discuss recent evidence indicating that the NADPH oxidase 

NOX4 may be one of the most important mediators of ROS generation in SSc, and the 

potentially beneficial effects of inhibition of NOX4 activity as a cogent therapeutic approach for 

SSc-associated tissue fibrosis and fibroproliferative vasculopathy. 
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CELLULAR SENESCENCE AND SSc PATHOGENESIS. 

Cellular Senescence and Senescence Associated Secretory Phenotype.  

Cellular senescence, a process first identified by Hayflick and Moorehead in their pioneering 

studies on human diploid fibroblasts cultured in vitro [9,10], is characterized by the permanent 

arrest of cell division associated with a variety of phenotypic changes including cellular 

enlargement, flattening, and vacuolization, as well as, numerous functional alterations [Reviewed 

in 11-16]. The most prominent of these alterations are the expression of novel specific gene 

products such as the senescence-associated β-galactosidase isoform (SA-β gal), and the 

acquisition of a unique complement of secreted molecules which includes inflammatory 

cytokines and chemokines, growth factors, and various proteases and other pro-inflammatory 

molecules collectively known as the senescence-associated secretory phenotype or SASP [17**-

21]. The most important pro-inflammatory and pro-fibrotic SASP components are listed in Table 

1. Although it was initially considered that cellular senescence may be solely a protective 

mechanism to prevent the uncontrolled cellular proliferative activity of malignant cells, extensive 

studies have demonstrated that it may participate in numerous physiological processes including 

embryonic development [22**,23**], as well as in pathologic conditions associated with aging 

[11-13, 24,25]. 

The mechanisms responsible for the irreversible arrest in cellular proliferative capacity are 

highly complex and although they have been studied extensively, they have not been fully 

elucidated. However, it has been shown that a variety of stimuli and numerous signaling 

pathways may be involved [11-13, 16,18]. The most important triggers of cellular senescence are 

the activation of the DNA-damage response (DDR) initiated by the occurrence of structural 

changes in DNA and complex molecular events involving oncogene effects, abnormalities in cell 
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cycle kinases, including various cyclin-dependent kinases, and telomere shortening or 

dysfunction [11-13, 26-28]. Of relevance to the topic of this review are the extensive 

observations demonstrating that two important mechanisms involved in cellular senescence are 

reactive oxygen species (ROS)-induced oxidative stress [29-34] and persistent stimulation by 

type I interferons [35-37]. 

 Cellular Senescence and SSc.  

There has been strong interest in the role of cellular senescence in malignancies and disorders of 

aging, however, there is very little information about its possible contribution to SSc 

pathogenesis. Among the few investigations that have explored the possible connection between 

senescence, aging, and SSc, a recent study conducted an evaluation of normal fibroblasts 

obtained from donors of various ages (up to 33 years of age) and of several dermal fibroblast cell 

strains obtained from patients with SSc employing a proteomic approach [38**]. The study 

identified numerous age-dependent differences including the accumulation of SA-βgal and 

showed that SSc fibroblasts displayed evidence indicative of cellular senescence and decreased 

autophagy. Another study [39] examined bone marrow derived mesenchymal stem cells from 

SSc patients and demonstrated that these cells displayed markers of early senescence and had an 

impairment in their ability to differentiate into endothelial cells suggesting that these alterations 

may be important for the pathogenesis of the vascular involvement in SSc.  

Numerous studies have examined alterations in telomere length as playing a role in the 

development of various autoimmune diseases including rheumatoid arthritis, systemic lupus 

erythematosus, SSc, and Sjögren syndrome, however, the available evidence is not conclusive 

and may be even contradictory in some studies [40,41]. There are very few studies of telomere 

length in SSc [42-44]. Although an early study described that telomere length was significantly 
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shortened in SSc patients and suggested that this observation may be either reflective of a genetic 

predisposition to chromosomal instability or the result of exposure to a noxious environmental 

agent [42], a more recent study described contradictory results demonstrating that telomere 

length was longer in peripheral blood mononuclear cells from SSc patients [44]. Therefore, the 

original description of shortened telomeres in cells from SSc patients requires further 

experimental validation. In this respect, a study of telomerase activity in peripheral blood 

mononuclear cells from patients with various autoimmune diseases demonstrated that in contrast 

with cells from patients with rheumatoid arthritis and systemic lupus erythematosus that 

displayed elevated activity of the enzyme, cells from SSc patients had remarkably low levels of 

telomerase activity [45]. However, the significance of this observation to SSc pathogenesis has 

not been elucidated. 

Although not directly related to SSc pathogenesis, several studies of another fibrotic disease that 

displays a clear pattern of increased occurrence in older individuals; namely idiopathic 

pulmonary fibrosis (IPF), have provided evidence to support the notion that cellular senescence 

may play an important role in its pathogenesis [46-48]. Indeed, recent studies showed an 

unexpectedly high frequency of telomerase mutations and telomere shortening in a large 

population of patients affected with the familial form of IPF [49,50]. 

Caveolin-1 and PTEN in cellular senescence.  

Strong experimental evidence has demonstrated that caveolin-1 (cav-1), the protein responsible 

for the remarkable functional properties of caveolae, is decreased in affected cells and tissues 

from SSc or IPF patients [51-54]. Numerous recent studies have shown that cav-1 plays and 

important role in the pathophysiology of tissue fibrosis [51,52,55**]  most likely, owing to its 

ability to induce internalization of activated TGF-β receptors into cav-1 lipid rafts leading to 
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their rapid proteasomal degradation [52,55**]. Although an earlier study indicated that 

expression of cav-1 induced premature cellular senescence in primary cultures of murine 

fibroblasts [56], and a more recent investigation demonstrated that cav-1 deficiency protects 

from bleomycin-induced pulmonary fibrosis in mice [57], recent evidence indicates that cav-1 

exerts antifibrotic effects by modulating the activity of the phosphatase and tensin homolog 

(PTEN). PTEN is a tumor suppressor protein that has been implicated in cellular senescence. A 

recent study found that PTEN was markedly decreased in lung fibroblasts from IPF patients as 

well as in lungs from mice with bleomycin-induced pulmonary fibrosis and that this reduction 

was mediated by decreased cav-1 [58]. In light of previous studies demonstrating that a reduction 

of PTEN exerted potent pro-fibrotic effects in vitro and in vivo [59], the newly uncovered 

interaction between cav-1, PTEN and cellular senescence represents a novel pro-fibrotic 

mechanism that may be of relevance to SSc pathogenesis. 

ROS and OXIDATIVE STRESS IN SSc PATHOGENESIS. 

Evidence of oxidative stress in SSc.   

In 1993, Murrell proposed a unifying hypothesis to explain the pathogenesis of the cutaneous 

fibrotic process in a variety of systemic fibrotic disorders including SSc suggesting a crucial role 

for oxygen free radical induced oxidative stress [60]. Following this report numerous studies 

have provided experimental support for this hypothesis and explored the mechanisms involved 

[Reviewed in 61- 63]. It has been shown that oxidative stress in SSc is the result of an imbalance 

between the production of oxidative stress producing systems and their antagonist antioxidant 

mechanisms. Increased generation or overproduction of ROS appears to be the main mechanism 

whereas ROS inactivation plays a less important role. Although one recent study demonstrated 

increased levels of antioxidants in serum of about 25% of SSc patients as measured by a total 
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antioxidant power assay [64**], numerous other studies have shown increased ROS production 

by various cells in SSc, as well as elevated levels in plasma from SSc patients [65*-69] 

providing strong evidence for the important contribution of oxidative stress in SSc pathogenesis. 

A recent study compared the total oxidant status (TOS), total antioxidant status (TAS) and an 

oxidative stress index (OSI) between SSc patients and healthy volunteers. The results 

demonstrated that TOS and OSI levels were significantly higher in SSc patients than in controls, 

whereas there were no significant differences in TAS between the two groups [65**]. These 

results indicated a remarkable imbalance between the profoundly increased oxidative stress 

levels and the relatively insufficient antioxidant status in SSc. In agreement with these 

observations elevated levels of various oxidative stress-related products have been detected in 

various biological fluids from SSc patients including increased urinary 8-oxodG levels [70], and 

increased levels of isoprostanes  in SSc serum [71,72], in the urine [73,74] or in exhaled breath 

[75].  Isoprostanes such as F2-isoprostanes are markers of lipid peroxidation [76], produced in 

vivo in humans by free radical-catalyzed peroxidation of arachidonic acid. Other markers of 

oxidative stress in SSc include increased serum levels of N(epsilon)-(hexanoyl)lysine [77] and 

elevated serum levels of heat shock protein 70 [78]. The functional relevance of the elevated 

oxidative stress components in the circulation of SSc patients was evidenced in one recent study 

showing that sera from patients with SSc pulmonary hypertension caused oxidative stress 

induced activation of collagen synthesis in human pulmonary smooth muscle cells [79]. 

Role of ROS in SSc fibrosis and fibroproliferative vasculopathy.   

ROS are a group of oxygen-derived molecules characterized by high chemical reactivity. It has 

been recently recognized that under physiological conditions ROS play important functions in 

intracellular signaling by activating redox-sensitive pathways including the cellular responses to 
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growth factor stimulation and the establishment of inflammatory responses [Reviewed in 80-82]. 

However, in pathological states, higher ROS levels can induce oxidative stress causing damage 

to proteins, lipids, and DNA, as well as inducing cellular senescence as discussed above.  

Following Murrell’s provocative hypothesis linking SSc pathogenesis to the deleterious effects 

of ROS [60] numerous studies have implicated excessive oxidative stress and the generation of 

deleterious ROS in the pathogenesis of SSc [Reviewed in 61-63]. The studies of Sambo et al. 

[69] provided elegant experimental evidence that SSc dermal fibroblasts produce increased 

levels of ROS compared with normal cells and that the elevated ROS may be involved in the 

increased expression of a profibrotic phenotype in these cells. The same group also demonstrated 

that monocytes from SSc patients spontaneously release increased amounts of superoxide anion 

in vitro [66].  Other studies supporting the role of ROS in the development of the fibrotic and 

vasculo-proliferative lesions in SSc include the induction of high production of ROS by 

endothelial cells and fibroblasts in vitro following exposure to sera from SSc patients [68] and in 

pulmonary artery smooth muscle cells exposed to serum from SSc patients with pulmonary 

hypertension [79], as well as the ROS mediated inhibition of the anti-Wnt protein, Wint 

inhibitory factor 1 (WIF-1) leading to activation of Wnt pathway-induced tissue fibrosis (83**). 

Another study described a dose dependent abrogation of the increased production and secretion 

of type I collagen and fibronectin characteristic of SSc fibroblasts following in vitro exposure to 

the potent antioxidant, epigallocatechin-3-gallate (EGCG). EGCG also reduced the expression of 

the fibrotic marker CTGF, inhibited collagen gel contraction, and suppressed intracellular 

ERK1/2 kinase signalling and NF-κB activity [84**].  

Although the detailed mechanisms involved in ROS effects in induction and establishment of the 

fibrotic process in SSc have not been fully elucidated there is intense ongoing research exploring 
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various novel directions. Among these, one recent study described a novel mechanism by which 

ROS may promote a profibrotic phenotype in SSc fibroblasts [85**]. This mechanism involves 

the ROS-mediated oxidative inactivation of protein tyrosine phosphatase 1B (PTP1B) leading to 

pronounced platelet derived growth factor receptor (PDGFR) activation. In this study, PTP1B 

activity was significantly reduced in SSc fibroblasts, most likely as a result of increased cysteine 

oxidation caused by higher levels of ROS. Confirmation of the important role of PTP1B on the 

regulation of the fibrotic process was obtained from studies showing that decreased PTP1B 

expression in normal fibroblasts led to increased expression of the genes encoding type I 

collagen and to elevated production of the corresponding protein [85**].  

NADPH OXIDASES (NOX). 

The NOX family of membrane-associated enzymes catalyze the reduction of O2 to form ROS. 

The crucial roles of NOX in normal cellular physiology is evidenced by the remarkable increase 

in the number of NOX isoforms during eukaryotic evolution and their striking conservation 

through multiple species [86,87]. Several biochemical processes and enzyme systems are capable 

of producing ROS in vivo, however, the NADPH oxidases are the primary enzymes responsible 

for inducible ROS formation [Reviewed in 88-90]. The role of NOX enzymes in a variety of 

human disorders is currently the focus of intense investigation and numerous studies have 

provided strong experimental evidence to support their participation in a variety of pathologic 

conditions. Currently seven distinct NOX isoforms have been identified in humans and there are 

substantial differences in their tissue distribution, however, several of them display prominent 

expression in tissues and cells of substantial relevance to the pathophysiology of SSc. The three 

most important NOX isoforms related to SSc are NOX1, NOX2, and NOX4. Although the 

highest expression levels of NOX1 are in colonic epithelium, this isoform is also abundantly 



 

11 
 

expressed in endothelial cells and vascular smooth muscle cells. NOX2 is the classic 

inflammatory isoform found in neutrophils and macrophages but is also expressed in B-

lymphocytes and in endothelial cells. NOX4 is highly expressed in the kidneys, however, it 

displays very high expression in fibroblasts, smooth muscle cells, and endothelial cells as well as 

in the lung.  

ROLE OF NOX4 IN TISSUE FIBROSIS 

 Numerous recent studies have shown that NOX4 is a crucial molecule involved in the initiation, 

establishment and development of tissue fibrosis.  Indeed, multiple growth factors and related 

polypeptides which participate in SSc pathogenesis [4-7] including TGF-ß, the most potent 

cytokine implicated in the fibrotic process, as well as other profibrotic polypeptides including 

PDGF, angiotensin II, and endothelin-1 have been shown to modulate the expression of NOX, 

and in particular, that of NOX4. Stimulation of NOX4 expression by TGF-β has been 

demonstrated in numerous recent studies [91-93]. PDGF, angiotensin II, and endothelin-1 have 

also been shown to induce increased NOX4 expression [94-96]. NOX4 has been identified as a 

source of ROS responsible for the generation and activation of TGF-β induced pulmonary, 

cardiac and renal myofibroblasts in vitro [91-93, 97-102]. NOX4 is upregulated in lungs of 

patients with IPF and in kidney and liver fibrosis [99,103,104]. NOX4-dependent generation of 

ROS has been postulated to be involved in the fibrotic process in SSc [105,106], however, 

experimental evidence in support of this hypothesis is still lacking. Of great relevance to the role 

of NOX4 in the pathogenesis of the fibroproliferative vasculopathy in SSc is a recent study 

demonstrating that ROS were capable of inducing the phenotypic conversion of endothelial cells 

into activated myofibroblasts through a TGF-β dependent mechanism [107**]. 

Regulation of NOX4 activity.  
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The mechanisms involved in the regulation of NOX activity are quite complex and it is likely 

that they vary depending on a specific cellular and functional context. However, it is important to 

emphasize that, in contrast with all other NOX enzymes, NOX4 does not require other protein 

subunits for its activity and, therefore, the levels of its activity are dependent on the levels of 

expression of its corresponding gene [108]. Given the important functions of NOX4 in a variety 

of physiological processes and in the pathogenesis of numerous diseases, there has been intense 

interest in unveiling the intimate mechanisms of its regulation. The mechanisms of increased 

NOX4 expression by TGF-β are the focus of intense investigation [109,110]. A recent study 

identified a far upstream AP-1/Smad binding element in the human NOX4 promoter that was 

involved in the regulation of NOX4 expression by TGF-β [109].  

Regarding the regulation of NOX4 activity one important mechanism has been recently 

recognized. This study demonstrated a novel and quite important interaction of NOX4 with the 

polymerase delta interacting protein 2 (PDIP2) that resulted in a three-fold stimulation of NOX4 

activity by PDIP2 [111**]. The full significance of this important discovery is still not apparent 

but undoubtedly represents a promising novel area for further investigation. Although the exact 

mechanisms involved in the regulation of NOX4 levels in normal cells are becoming unveiled 

the possible alterations responsible for the constitutive elevation in NOX4 levels and activity in 

SSc cells have not been studied.  

NOX4 inhibitors as a potential antifibrotic therapeutic intervention.   

Following Murrell’s provocative hypothesis [60], numerous studies have provided strong 

supporting evidence for a role of ROS in abnormal, exaggerated fibrogenesis, and for the 

therapeutic targeting of ROS in fibrotic disorders such as SSc [112]. Indeed, a plethora of 

clinical studies have examined a variety of pharmacological or naturally occurring antioxidant 
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compounds as potential therapeutic agents for various aspects of the complex clinical 

manifestations of SSc [113-122]. Most of the clinical studies examining the effects of antioxidant 

therapy for SSc including some large placebo controlled clinical trials [122] have not provided 

conclusive evidence of a therapeutical benefit. However, the recent demonstration of the crucial 

role of NOX4 in the generation of ROS and the development of highly selective small molecule 

inhibitors [123**,124**] and/or specific small synthetic peptide inhibitors targeting NOX4 

[125**] offers substantial promise for the treatment of currently incurable fibrotic disorders, 

such SSc or IPF [Reviewed in 126-128]. Indeed, numerous recent studies have shown that a 

selective NOX1/NOX4 inhibitor exerted highly effective antifibrotic effect in various animal 

models of tissue fibrosis [129-132]. The extensive study of Hecker et al. (131**) demonstrated 

remarkable differences in the extent and severity of bleomycin-induced pulmonary fibrosis 

induced in young mice compared to aged mice. These differences were caused by a NOX4-

induced senescence phenotype in fibroblasts from the aged animals that prevented fibrosis 

resolution by rendering these cells resistant to apoptosis. The results demonstrated that persistent 

lung fibrosis in aging was mediated by NOX4 induced oxidative stress that resulted in cellular 

senescence and the acquisition of an apoptosis-resistant fibroblast phenotype. A remarkable 

observation was the reversal of these phenotype following treatment with the NOX4 selective 

small molecule inhibitor, GKT137831. 

Although the extensive investigational studies reviewed above have suggested that specific or 

selective NOX4 inhibitors may be of benefit for the therapy of SSc patients their beneficial 

effects need to be conclusively demonstrated in rigorously controlled clinical trials. 

CELLULAR SENESCENCE AND OXIDATIVE STRESS PATHWAYS LEADING TO 

TISSUE FIBROSIS IN SSc. 
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The causative agent or events and the exact mechanisms responsible for SSc development 

remain unknown. However, extensive recent information about cellular senescence and oxidative 

stress suggest a cogent hypothesis that may explain numerous observations obtained from the 

study of SSc cells and tissues. This hypothesis postulates that the potent profibrogenic growth 

factor, TGF-β becomes activated following its release from the TGF-β latent binding protein and 

engages its cognate receptors in the surface of TGF-β-responsible cells. The sequence of events 

resulting from active TGF-β receptor engagement leads to the upregulation of expression of 

NOX4 mediated by the canonical Smad pathway although other non-canonical TGF-β signaling 

pathways may be involved as well. Owing to the fact that NOX4 does not require additional co-

factors and that its activity is largely determined by the levels of protein expression, the TGF-β 

induced increase in NOX4 transcript levels results in increased NOX4-mediated ROS 

production. Elevated ROS production would then initiate a cascade of events leading to the 

establishment of an autocrine and paracrine self-stimulating pathway responsible for the 

progressive fibrotic process in SSc. The main components of the autocrine/paracrine loop 

induced by elevated ROS levels include the following:  

1. Further release of TGF-β from the latent TGF-β complex.   

2. Intracellular activation of TGF-β-dependent signaling pathways leading to the activation 

of quiescent fibroblasts and the induction of the myofibroblast phenotype in these cells, 

as well as in endothelial cells through the process of endothelial to mesenchymal 

transition. The activated myofibroblasts are the cells ultimately responsible for the 

fibrotic process in SSc. TGF-β also causes downregulation of genes encoding for 

antifibrotic proteins such as cav-1 and PTEN or MMPs and other ECM degrading 
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enzymes. Reduction of cav-1 and PTEN is also involved in stimulation of cellular 

senescence as well as in stimulation of the pro-fibrotic phenotype. 

3. ROS-mediated initiation and maintenance of cellular senescence. This is one of the 

crucial components of the pathway initiated by ROS-mediated oxidative stress in the 

target cells that results in tissue fibrosis. Although other mechanisms that cause cellular 

senescence such as DDR or telomere shortening may also be involved, oxidative stress, 

an important initiating event of cellular senescence is induced by elevated ROS levels.  

4. The establishment of cell senescence in the target cells is accompanied by profound 

structural and molecular changes including the expression of SASP and the secretion of 

multiple proinflammatory and profibrotic molecules (Table 1). 

5. The multiple components of the SASP exert potent effects on a variety of cells that are 

involved in SSc pathogenesis including fibroblasts, endothelial cells and monocytes. 

6. Cytokines and growth factors present in the SASP induce quiescent fibroblasts to become 

activated and to acquire the profibrotic phenotype of activated myofibroblasts. These 

cells produce exaggerated levels of various ECM macromolecular components and, also 

display reduced expression and secretion of relevant metalloproteinases and other 

proteases capable of degradation of ECM components. 

7. The endothelial cells present in the microvasculature in proximity to the senescent cells 

are also induced by SASP components to change their phenotype and become activated 

myofibroblasts through endothelial to mesenchymal cellular transdifferentiation 

processes. 

8. Monocytes are attracted from the circulation through the effects of various cytokines and 

chemokines present in the SASP and become activated. Following their activation 
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macrophages are induced to change their phenotype into profibrotic M2 macrophages 

which then establish a chronic inflammatory infiltrate in the affected tissues.  

9. The activated M2 macrophages can directly contribute to the fibrotic process through the 

production and secretion of profibrotic cytokines and growth factors causing further 

stimulation of ECM production as well as, by enhancing the activation of quiescent 

fibroblasts into myofibroblasts and by inducing the endothelial to mesenchymal transition 

of endothelial cells. 

10. The activated macrophages also contribute to the establishment of a vicious cycle 

mediated by the macrophage production of TGF-β, and interferons and related 

macromolecules. The macrophage production of TGF-β can induce further NOX4 

production, and the interferon and related peptides can re-enforce the process of cellular 

senescence, thus allowing the establishment of an autocrine and paracrine self-sustaining 

mechanism that leads to tissue fibrosis. 

 

CONCLUSION 

 There is strong experimental evidence supporting the concept that cellular senescence and ROS-

mediated oxidative stress play a crucial role in the initiation, establishment and the progression 

of fibrosis in SSc and that these effects appear to involve NOX4. Therefore, the potential use of 

specific NOX4 inhibitors for the treatment of SSc would be expected to be an effective 

therapeutic approach. Although numerous clinical studies have examined the potentially 

beneficial effects of various therapeutic interventions aimed at the reduction of oxidative stress 

for SSc the results have not conclusively shown therapeutic effectiveness. Therefore, it will be 

necessary to perform in vitro studies with specific or selective small molecule or peptide NOX4 
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inhibitors followed by well designed placebo controlled clinical trials to document conclusively 

any beneficial effects. Furthermore, clinical trials should also consider evaluating the use of 

NOX4 inhibitors in combination with other drugs modulating different  pathways of the complex 

pathogenesis of SSc as this multidrug approach may result in improved therapy for this disabling 

and frequently fatal disease. 
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Legend to Figures. 

Figure 1.  Schematic diagram depicting the mechanisms involved in the induction of 

SSc-associated tissue fibrosis by cellular senescence and ROS-mediated oxidative stress 

and in the establishment of an autocrine/paracrine vicious cycle responsible for the 

progression and persistence of the fibrotic process. 1. Release of TGF-β from the latent 

TGF-β binding protein, followed by its activation and binding to cognate TGF-β 

receptors. 2. Stimulation of transcription of the NOX4 gene leading to increased NOX4 

and to increased ROS production. 3. Elevated ROS levels induce oxidative stress in the 

target cells as well as phenotypic changes in fibroblasts and endothelial cells causing 

their conversion into activated myofibroblasts. 4. Oxidative stress induces 

morphological and functional changes of cellular senescence. 5. Senescent cells express 

the senescence-associated secretory phenotype (SASP). 6-9.The components of the 

SASP induce phenotypic changes in fibroblasts (6), endothelial cells (7) and monocytes 

(8). The monocytes become activated M2 profibrotic macrophages that further increase 

the fibrotic process (9). 10. The activated macrophages produce and secrete TGF-β and 

interferons and various interferon-related molecules. The secreted TGF-β and 

interferon related products close the vicious cycle and allow establishment of an 

autocrine/paracrine pathway that is responsible for the initiation, and progression of 

tissue fibrosis in SSc. 
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