38 research outputs found

    Swelling, mechanical and barrier properties of albedo-based films prepared in the presence of phaseolin crosslinked or not by transglutaminase

    Get PDF
    Edible films were obtained from Citrus paradisi grapefruit albedo homogenates and bean protein phaseolin modified or not by the enzyme transglutaminase. Swelling capability, barrier performance to water vapor, oxygen and carbon dioxide, and mechanical properties of such films were investigated. The addition of the protein, mostly in the presence of transglutaminase, provide films less swellable at pH values above 5 compared to films made by albedo homogenates only, whereas the action of the enzyme clearly improves mechanical properties producing more stretchable and elastic films. Moreover, transglutaminase-mediated cross-linking of phaseolin gives rise to films less permeable to carbon dioxide and able to offer a high barrier to water vapor. These findings suggest that albedo-phaseolin film prepared in the presence of transglutaminase can be a promising candidate to be used as food edible wrap

    improving the health quality of fried falafel middle eastern food by using transglutaminase and or pectin coating

    Get PDF
    The most disadvantage of the fried falafel balls are the highest level of acrylamide formed during Maillard reaction. Falafel balls are one of the largest deep fat frying fast food in the Middle East made basically of chickpeas. The main aim of this study was to investigate the effect of adding transglutaminase (TG, E.C. 2.3.2.13) to the falafel dough followed or not by dipping into pectin (PEC 1%) coating solution. Acrylamide, oil and water content of the fried falafel balls treated or not by TG (5 or 20U/g of chickpea proteins) and coated or not with PEC-containing film forming solutions were evaluated. In addition, the texture profile analyses were carried out. We observed, by TOF LC/MS, that the acrylamide content was reduced, compared to control sample, by 10.8% and 34.4% in the samples set up by adding 5 and 20 U TG/g respectively. In PEC-coated samples, acrylamide reduction was about by 59%, 65.3% and 84.5%, in falafel balls prepared either without of TG or containing 5U or 20 U of the enzyme, respectively, suggesting that TG-mediated crosslinks increase the water content inside the falafel balls, thus, reducing the rate of Maillard reaction. However, TG treatment does not affect oil content, while the PEC coating reduces the oil uptake about 23.5%. Finally, no difference was observed between the control sample and the one dipped in PEC regarding their texture properties hardness, chewiness and gumminess, while these properties were influenced in samples set up in the presence of the enzyme

    Impact of transglutaminase treatment on properties and in vitro digestibility of white bean (Phaseolus vulgaris L.) flour

    Get PDF
    Common beans (Phaseolus vulgaris L.) are rich in nutrients and have significant amounts of proteins and complex carbohydrates, besides to be rich in unsaturated fatty acids and dietary fibres. Consumption of beans could be improved by processing them into flour. In this study the effect of microbial transglutaminase (TG) on the structure, physical (colour parameters, moisture, water holding capacity), thermal properties and in vitro digestion of undehulled (WB) and manually dehulled (SB) flour samples from white common beans (P. vulgaris L.) was evaluated. Flour samples were incubated in the absence and presence of TG (WB/TG and SB/TG). We observed that the enzyme is able to catalyse the formation of polymers, suggesting that the proteins occurring in the bean flour act as TG substrates. Microstructure of samples was examined by Scanning Electron Microscopy (SEM), while thermal properties were studied by Differential Scanning Calorimetry. Microstructural results showed that the TG-treated samples possess a more compact structure, made of starch granules surrounded by proteins that, presumably, contain TG-catalysed polymers. Moreover, TG treatment had a major impact on colour, water holding capacity (WHC) and thermal properties. In particular, WB and SB samples presented a darker colour than WB/TG and SB/TG samples, while the latter showed reduced WHC that was only 30% and 37% of WB and SB samples, respectively. The transition enthalpy (ΔH) in the temperature range from 57 to 70 °C (WB, WB/TG) and from 60 to 68 °C (SB, SB/TG) followed the order: WB/TG > WB and SB/TG > WB, respectively. In vitro digestion experiments indicate that the presence of isopeptide bonds decreased the digestibility of TG-treated flour samples

    Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities

    Get PDF
    : The formulation of eco-friendly biodegradable packaging has received great attention during the last decades as an alternative to traditional widespread petroleum-based food packaging. With this aim, we designed and tested the properties of polyhydroxyalkanoates (PHA)-based bioplastics functionalized with phloretin as far as antioxidant, antimicrobial, and morpho-mechanic features are concerned. Mechanical and hydrophilicity features investigations revealed a mild influence of phloretin on the novel materials as a function of the concentration utilized (5, 7.5, 10, and 20 mg) with variation in FTIR e RAMAN spectra as well as in mechanical properties. Functionalization of PHA-based polymers resulted in the acquisition of the antioxidant activity (in a dose-dependent manner) tested by DPPH, TEAC, FRAR, and chelating assays, and in a decrease in the growth of food-borne pathogens (Listeria monocytogenes ATCC 13932). Finally, apple samples were packed in the functionalized PHA films for 24, 48, and 72 h, observing remarkable effects on the stabilization of apple samples. The results open the possibility to utilize phloretin as a functionalizing agent for bioplastic formulation, especially in relation to food packaging

    Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information

    Get PDF
    [EN] Background In vitro digestion models show great promise in facilitating the rationale design of foods. This paper provides a look into the current state of the art and outlines possible future paths for developments of digestion models recreating the diverse physiological conditions of specific groups of the human population. Scope and approach Based on a collective effort of experts, this paper outlines considerations and parameters needed for development of new in vitro digestion models, e.g. gastric pH, enzymatic activities, gastric emptying rate and more. These and other parameters are detrimental to the adequate development of in vitro models that enable deeper insight into matters of food luminal breakdown as well as nutrient and nutraceutical bioaccessibility. Subsequently, we present an overview of some new and emerging in vitro digestion models mirroring the gastro-intestinal conditions of infants, the elderly and patients of cystic fibrosis or gastric bypass surgery. Key findings and conclusions This paper calls for synchronization, harmonization and validation of potential developments in in vitro digestion models that would greatly facilitate manufacturing of foods tailored or even personalized, to a certain extent, to various strata of the human population.Shani-Levi, C.; Alvito, P.; Andrés Grau, AM.; Assunção, R.; Barbera, R.; Blanquet-Diot, S.; Bourlieu, C.... (2017). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science & Technology. 60:52-63. https://doi.org/10.1016/j.tifs.2016.10.017S52636

    Uso dell'enzima transglutaminasi come strumento biotecnologico per la preparazione di film idrocolloidi a composizione mista

    Get PDF
    L’obiettivo perseguito nel presente progetto si prefiggeva di ottenere film edibili idrocolloidi a composizione mista utilizzando come strumento biotecnologico la transglutaminasi microbica (mTG) per polimerizzare la componente proteica di tali film. La mTG catalizza la formazione di legami isopeptidici intra e/o intermolecolari fra il gruppo γ-carbossiamidico di residui glutamminici e il gruppo ε-aminico di residui lisinici entrambi endo-proteici. Proteine della farina dei semi di soia (modificate e non con la mTG) e pectine di mela sono state utilizzate come molecole modello per ottenere film manipolabili e trasparenti. Questi film sono stati caratterizzati da un punto di vista della solubilità (in differenti pH e condizioni denaturanti) e della permeabilità al vapore acqueo, ossigeno e anidride carbonica. Tali analisi hanno dimostrato che i film preparati in presenza di mTG presentano una minore solubilità rispetto ai film in cui è assente l’enzima. Le prove di permeabilità hanno indicato che i film preparati con proteine modificate dalla mTG offrono una barriera all’acqua, all’ossigeno ed all’anidride carbonica maggiore di quella fornita dai film preparati in assenza di mTG. Le pectine di origine commerciale sono state poi sostituite da omogenati provenienti dal finocchio (Foeniculum vulgare) allo scopo di trasformare tali “wastes” ad alto impatto ambientale in materie prime per ulteriori processi di trasformazione biotecnologici. Tali omogenati sono stati utilizzati per la preparazione di film in presenza delle proteine della soia modificate e non dall’enzima. I film ottenuti hanno dimostrato avere un ottimo grado di manipolabilità e sono stati quindi sottoposti a prove di natura meccanica, prove che sono servite a stabilire la resistenza dei film. I risultati ottenuti hanno dimostrato che tale parametro aumenta notevolmente in presenza della mTG, dimostrando che l’enzima crea un materiale con una reticolazione più omogenea e resistente. In un secondo momento gli estratti grezzi di finocchio sono stati sostituiti dalle pectine estratte da tale ortaggio. Per capire le basi responsabili delle loro capacità filmanti, queste pectine sono state caratterizzate dal punto di vista chimico-molecolare. Effettuata tale caratterizzazione, le pectine estratte dal finocchio sono state utilizzate come fonte glucidica per la preparazione di ulteriori film di cui la componente proteica era rappresentata dalla faseolina che, essendo una proteina globulare, è capace di formare complessi e coacervati con le pectine Tali film sono stati sottoposti a prove di “swelling”, ovvero di capacità di rigonfiamento in diverse condizioni, di pH, di pressione osmotica e forza ionica. Le pectine del finocchio, così come le pectine estratte da altre matrici vegetali, si rigonfiano con il diminuire della forza ionica e della pressione osmotica ma si restringono con l’aumentare del pH. Inoltre l’aggiunta della faseolina fa ridurre i valori di “swelling”, dimostrando che l’aggiunta della proteina rende più compatta la matrice polisaccaridica, in modo tale da porre resistenza ad un’eccessiva idratazione. Tra le caratteristiche della faseolina si annovera la sua attività anti-feeding nei confronti di larve molto dannose all’agricoltura. Questa caratteristica risulta molto importante in previsione di un’applicazione dei film proposti come teli per la pacciamatura. È stato verificato, mediante un saggio in vitro, che l’attività anti-feeding della faseolina si conserva anche quando la proteina è modificata dalla mTG, lasciando immaginare quindi un possibile utilizzo dell’enzima anche per la produzione di pellicole da utilizzare in campo agronomico. Naturalmente in un prossimo futuro ci si propone di studiare questi film dal punto di vista della biodegradabilità, della solubilità e della permeabilità in condizioni simulanti le condizioni del terreno, ambiente di elezione per tutte le applicazioni destinate all’agricoltura

    Plastics vs bioplasics

    No full text
    Oratore presso il master Biociorce (Master in Bioeconomy in the Circular Economy ) per descrivere l'impotanza delle boplastiche nel risurre l'inuinamento ambienal

    SVILUPPO DI RIVESTIMENTI (COATINGS) IDROCOLLOIDALI FUNZIONALIZZATI CON PEPTIDI AVENTI ATTIVITÀ ANTI-MICROBICA PER AUMENTARE LA SHELF-LIFE DI PRODOTTI ALIMENTARI

    No full text
    Descrizione dei risultati ottenuti dal progetto finanziato dal MIPAAFT riguardante lo sviluppo di inballaggi attivi ed intelligent

    Impact of dehulling on the physico-chemical properties and in vitro protein digestion of common beans (Phaseolus vulgaris L.)

    No full text
    The objective of this study was to study the effect of dehulling on the microstructural, physico-chemical characteristics, and in vitro protein digestion of common bean flours with particular regard to differences between adult and infant human beings. The microstructure of flour samples from undehulled (WB) and manually dehulled (SB) beans, observed through scanning electron microscopy, showed that WB starch granules appeared surrounded by an integral matrix, while the SB starch granule structure was still visible although covered by protein clusters. The starch granules were oval and spherical, with heterogeneous sizes ranging from 19 to 30 μm in diameter. Particle size analysis determined with a laser diffraction particle size analyzer showed similar bimodal particle size distributions of small (1–25 μm) and large (>100 μm) granules, though the particle size of WB was obviously higher than SB. Color and other physico-chemical analyses showed that dehulling had significant (P < 0.05) influence on all investigated characteristics. The in vitro gastric and duodenal digestion experiments carried out under physiological conditions showed that the SB samples are more prone to be digested by infants. From our results, it is possible to conclude that the dehulling process improves bean flour nutritional functionality which could be utilized in various food applications

    Properties of Bio-Materials Obtained from Milk Whey Proteins at Different pH Values and Plasticizer Concentrations

    Get PDF
    Milk whey (MW) represents the major by-product of cheese industry. One possibility to recycle the MW wastes is the use of their globular proteins (MWPs) as a polymer source for the production of biodegradable plastic materials. MWP-based films are usually obtained by protein heat treatment in the presence of glycerol (GLY) as plasticizer at pH 7, a method which would require commercially high costing process. In this work it was exploited the possibility to produce manageable MW-derived biomaterials without any heat-treatment but under alkaline conditions. Our results demonstrated that the casting at pH 12 of the unheated MWP film forming solutions (FFSs), containing either 40% or 50% GLY, led to produce more resistant and flexible biomaterials than the ones obtained at pH 7. Also film transparency was observed significantly improved, being lower in the samples obtained at alkaline pH without MWP heating and with higher GLY concentrations. Finally, moisture content decreased with the reduction of GLY content, both in heated and unheated MWP-based films, whereas water uptake of the different films prepared at pH 12 did not significantly change
    corecore