139 research outputs found
Global, Regional, and National Life Expectancy, All-Cause Mortality, and Cause-Specific Mortality for 249 Causes of Death, 1980-2015: A Systematic Analysis for the Global Burden of Disease Study 2015
Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer\u27s disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd
Variations in disability and quality of life with age and sex between eight Lower and Middle Income Countries:data from the INDEPTH WHO-SAGE collaboration
Background: Disability and quality of life are key outcomes for older people. Little is known about how these measures vary with age and gender across lower income and middle-income countries; such information is necessary to tailor health and social care policy to promote healthy ageing and minimise disability. Methods: We analysed data from participants aged 50 years and over from health and demographic surveillance system sites of the International Network for the Demographic Evaluation of Populations and their Health Network in Ghana, Kenya, Tanzania, South Africa, Vietnam, India, Indonesia and Bangladesh, using an abbreviated version of the WHO Study on global AGEing survey instrument. We used the eight-item WHO Quality of Life (WHOQoL) tool to measure quality of life and theWHO Disability Assessment Schedule, version 2 (WHODAS-II) tool to measure disability. We collected selected health status measures via the survey instrument and collected demographic and socioeconomic data from linked surveillance site information. We performed regression analyses to quantify differences between countries in the relationship between age, gender and both quality of life and disability, and we used anchoring vignettes to account for differences in interpretation of disability severity. Results: We included 43 935 individuals in the analysis. Mean age was 63.7 years (SD 9.7) and 24 434 (55.6%) were women. In unadjusted analyses across all countries, WHOQoL scores worsened by 0.13 points (95% CI 0.12 to 0.14) per year increase in age and WHODAS scores worsened by 0.60 points (95% CI 0.57 to 0.64). WHODAS-II and WHOQoL scores varied markedly between countries, as did the gradient of scores with increasing age. In regression analyses, differences were not fully explained by age, socioeconomic status, marital status, education or health factors. Differences in disability scores between countries were not explained by differences in anchoring vignette responses. Conclusions: The relationship between age, sex and both disability and quality of life varies between countries. The findings may guide tailoring of interventions to individual country needs, although these associations require further study
National disability-adjusted life years(DALYs) for 257 diseases and injuries in Ethiopia, 1990–2015: findings from the global burden of disease study 2015
Background: Disability-adjusted life years (DALYs) provide a summary measure of health and can be a critical input
to guide health systems, investments, and priority-setting in Ethiopia. We aimed to determine the leading causes of
premature mortality and disability using DALYs and describe the relative burden of disease and injuries in Ethiopia.
Methods: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for non-fatal disease burden, cause-specific mortality, and all-cause mortality to derive age-standardized DALYs by sex
for Ethiopia for each year. We calculated DALYs by summing years of life lost due to premature mortality (YLLs) and
years lived with disability (YLDs) for each age group and sex. Causes of death by age, sex, and year were measured
mainly using Causes of Death Ensemble modeling. To estimate YLDs, a Bayesian meta-regression method was used.
We reported DALY rates per 100,000 for communicable, maternal, neonatal, and nutritional (CMNN) disorders,
non-communicable diseases, and injuries, with 95% uncertainty intervals (UI) for Ethiopia.
Results: Non-communicable diseases caused 23,118.1 (95% UI, 17,124.4–30,579.6), CMNN disorders resulted in
20,200.7 (95% UI, 16,532.2–24,917.9), and injuries caused 3781 (95% UI, 2642.9–5500.6) age-standardized DALYs
per 100,000 in Ethiopia in 2015. Lower respiratory infections, diarrheal diseases, and tuberculosis were the top three leading causes of DALYs in 2015, accounting for 2998 (95% UI, 2173.7–4029), 2592.5 (95% UI, 1850.7–3495.1), and 2562.9 (95% UI, 1466.1–4220.7) DALYs per 100,000, respectively. Ischemic heart disease and cerebrovascular disease were the fourth and fifth leading causes of age-standardized DALYs, with rates of 2535.7 (95% UI, 1603.7–3843.2) and 2159.9 (95% UI, 1369.7–3216.3) per 100,000, respectively. The following causes showed a reduction of 60% or more over the last 25 years: lower respiratory infections, diarrheal diseases, tuberculosis, neonatal encephalopathy, preterm birth complications, meningitis, malaria, protein-energy malnutrition, iron-deficiency anemia, measles, war and legal intervention, and maternal hemorrhage
Incidence, prevalence and mortality rates of malaria in Ethiopia from 1990 to 2015: analysis of the global burden of diseases 2015
Background: In Ethiopia there is no complete registration system to measure disease burden and risk factors accurately. In this study, the 2015 Global Burden of Diseases, Injuries and Risk factors (GBD) data were used to analyse the incidence, prevalence and mortality rates of malaria in Ethiopia over the last 25 years.
Methods: GBD 2015 used verbal autopsy (VA) surveys, reports, and published scientific articles to estimate the burden of malaria in Ethiopia. Age and gender-specific causes of death for malaria were estimated using Cause of Death Ensemble Modelling (CODEm).
Results: The number of new cases of malaria declined from 2.8 million (95% uncertainty interval (UI): 1.4-4.5million) in 1990 to 621,345 (95% UI: 462,230-797,442) in 2015. Malaria caused an estimated 30,323.9 deaths (95% UI: 11,533.3-61,215.3) in 1990 and 1,561.7 deaths (95% UI: 752.8-2,660.5) in 2015, a 94.8% reduction over the 25 years. Age-standardized mortality rate of malaria has declined by 96.5% between 1990 and 2015 with an annual rate of change (ARC) of 13.4%. Age-standardized malaria incidence rate among all ages and gender declined by 88.7% between 1990 and 2015. The number of disability-adjusted life years lost (DALY) due to malaria decreased from 2.2 million (95% UI: 0.76-4.7 million) in 1990 to 0.18 million (95% UI: 0.12-0.26 million) in 2015, with a total reduction 91.7%. Similarly, age-standardized DALY rate declined by 94.8% during the same period.
Conclusions: Ethiopia has achieved a 50% reduction target of malaria of the Millennium Development Goals (MDGs). The country should strengthen its malaria control and treatment strategies to achieve the Sustainable Development Goals (SDG)
Estimating the incidence of breast cancer in Africa: a systematic review and meta-analysis
Background
Breast cancer is estimated to be the most common cancer worldwide. We sought to assemble publicly available data from Africa to provide estimates of the incidence of breast cancer on the continent.
Methods
A systematic search of Medline, EMBASE, Global Health and African Journals Online (AJOL) was conducted. We included population- or hospital-based registry studies on breast cancer conducted in Africa, and providing estimates of the crude incidence of breast cancer among women. A random effects meta-analysis was employed to determine the pooled incidence of breast cancer across studies.
Results
The literature search returned 4648 records, with 41 studies conducted across 54 study sites in 22 African countries selected. We observed important variations in reported cancer incidence between population- and hospital-based cancer registries. The overall pooled crude incidence of breast cancer from population-based registries was 24.5 per 100 000 person years (95% confidence interval (CI) 20.1-28.9). The incidence in North Africa was higher at 29.3 per 100 000 (95% CI 20.0-38.7) than Sub-Saharan Africa (SSA) at 22.4 per 100 000 (95% CI 17.2-28.0). In hospital-based registries, the overall pooled crude incidence rate was estimated at 23.6 per 100 000 (95% CI 18.5-28.7). SSA and Northern Africa had relatively comparable rates at 24.0 per 100 000 (95% CI 17.5-30.4) and 23.2 per 100 000 (95% CI 6.6-39.7), respectively. Across both registries, incidence rates increased considerably between 2000 and 2015.
Conclusions
The available evidence suggests a growing incidence of breast cancer in Africa. The representativeness of these estimates is uncertain due to the paucity of data in several countries and calendar years, as well as inconsistency in data collation and quality across existing cancer registries
Severe infections emerge from commensal bacteria by adaptive evolution
Bacteria responsible for the greatest global mortality colonize the human microbiota far more frequently than they cause severe infections. Whether mutation and selection among commensal bacteria are associated with infection is unknown. We investigated de novo mutation in 1163 Staphylococcus aureus genomes from 105 infected patients with nose colonization. We report that 72% of infections emerged from the nose, with infecting and nose-colonizing bacteria showing parallel adaptive differences. We found 2.8-to-3.6-fold adaptive enrichments of protein-altering variants in genes responding to rsp, which regulates surface antigens and toxin production; agr, which regulates quorum-sensing, toxin production and abscess formation; and host-derived antimicrobial peptides. Adaptive mutations in pathogenesis-associated genes were 3.1-fold enriched in infecting but not nose-colonizing bacteria. None of these signatures were observed in healthy carriers nor at the species-level, suggesting infection-associated, short-term, within-host selection pressures. Our results show that signatures of spontaneous adaptive evolution are specifically associated with infection, raising new possibilities for diagnosis and treatment
- …