68 research outputs found

    Experimental validation of a rans-vof numerical model of the wave generation and propagation in a 2d wave flume

    Get PDF
    This paper focus on the study of free surface variation in a Numerical Wave Flume (NWF) due to a paddle movement. The NWF is the numerical representation of a 12.5 meters long Experimental Wave Flume (EWF) of the laboratory of the University of the Basque Country. The experiments and the numerical simulations are performed in several depths (0.3, 0.4 and 0.5 meters). Besides different velocities for the paddle movement are induced between 0.064 and 0.1 m/s. The numerical simulations are based on an Eulerian Multiphase of two fluids, air and water, more concretely the Volume of Fluid model. The surface variation in two points (6.0 and 6.3 meters from the wave flume start) is studied in both numerical and experimental wave flumes and compared its variation through the experiment time. Besides, the experiments will be analyzed in the wave maker theory. The results show the models quality in the first moments of the experiments, where the reflection does not appear, in which the results from both experimental and numerical simulations are pretty similar

    Hydraulics and heat transfer in the IFMIF liquid lithium target: CFD calculations

    Get PDF
    CFD (Computational fluid dynamics) calculation turns out to be a good approximation to the real behavior of the lithium (Li) flow of the target of the international fusion materials irradiation facility (IFMIF). A three-dimensional (3D) modelling of the IFMIF design Li target assembly, made with the CFD commercial code ANSYS-FLUENT has been carried out. The simulation by a structural mesh is focused on the thermal-hydraulic analysis inside the Li jet flow. For, this purpose, the two deuteron beams energy deposition profile is modelled as an energy source term inside the volume of liquid affected. Turbulence is estimated using the RNG k– model, and a surface-tracking technique applied to a fixed Eulerian mesh called volume of fluid (VOF) is used to determine the position of the free surface. Calculations varying the jet velocity from a range of 10–20 m/s, show that maximum calculated temperatures are still below the lithium's boiling point, due to the increase of the pressure induced by centrifugal forc

    The solubility of helium in lead–lithium eutectic alloy

    Get PDF
    The helium production rates in liquid metals (Pb-Li eutectic alloy, LLE and others) Blanket Breeders (BB) are nearly mol-to-mol linked to tritium and intimately associated with the compulsory requirement of high tritium self-sufficiency of next fusion reactors. When LLE is oversaturated and the helium solubility limit is exceeded, helium atoms can nucleate in the form of bubbles. The presence of helium bubbles within LLE channels could have severe impact on the diverse BB designs, in particular on tritium transport permeation and its recovery. Even though He is an inert gas assumed to be insoluble, the helium Henry’s constant (KH) in a liquid metal is not zero. The very low KH and difficulties to measure it has historically driven to the absence of basic data. A semi-empirical correlation is proposed providing the helium solubility (i.e.: the helium Henry’s constant) based on Kumar’s cohesion model using the available thermo-physical experimental solubility data for lithium, sodium, potassium, mercury. The proposed expression for eutectic lead–lithium is: being KH the Henry’s constant; T [K], R [8.314 10-3 kJ mol-1 K-1] and dk the Kumar’s cohesive parameter. From a dk justified value of 18.2 MPa1/2 in LLE the values for KH range from 1.14·10-17 to 1.35·10 -15 at.fr.Pa-1 for temperatures between 350 and 870C. The helium solubility should integrate the lead–lithium eutectic nuclear material database for fusion systems design.Peer ReviewedPostprint (published version

    A novel HIV vaccine adjuvanted by IC31 induces robust and persistent humoral and cellular immunity.

    Get PDF
    The HIV vaccine strategy that, to date, generated immune protection consisted of a prime-boost regimen using a canarypox vector and an HIV envelope protein with alum, as shown in the RV144 trial. Since the efficacy was weak, and previous HIV vaccine trials designed to generate antibody responses failed, we hypothesized that generation of T cell responses would result in improved protection. Thus, we tested the immunogenicity of a similar envelope-based vaccine using a mouse model, with two modifications: a clade C CN54gp140 HIV envelope protein was adjuvanted by the TLR9 agonist IC31®, and the viral vector was the vaccinia strain NYVAC-CN54 expressing HIV envelope gp120. The use of IC31® facilitated immunoglobulin isotype switching, leading to the production of Env-specific IgG2a, as compared to protein with alum alone. Boosting with NYVAC-CN54 resulted in the generation of more robust Th1 T cell responses. Moreover, gp140 prime with IC31® and alum followed by NYVAC-CN54 boost resulted in the formation and persistence of central and effector memory populations in the spleen and an effector memory population in the gut. Our data suggest that this regimen is promising and could improve the protection rate by eliciting strong and long-lasting humoral and cellular immune responses

    Evolutionary Heritage Influences Amazon Tree Ecology

    Get PDF
    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change

    Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-Pick disease type C: A prospective observational study

    Get PDF
    Background: Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. The diagnosis of NP-C remains challenging due to the non-specific, heterogeneous nature of signs/symptoms. This study assessed the utility of plasma chitotriosidase (ChT) and Chemokine (C-C motif) ligand 18 (CCL18)/pulmonary and activation-regulated chemokine (PARC) in conjunction with the NP-C suspicion index (NP-C SI) for guiding confirmatory laboratory testing in patients with suspected NP-C. Methods: In a prospective observational cohort study, incorporating a retrospective determination of NP-C SI scores, two different diagnostic approaches were applied in two separate groups of unrelated patients from 51 Spanish medical centers (n = 118 in both groups). From Jan 2010 to Apr 2012 (Period 1), patients with =2 clinical signs/symptoms of NP-C were considered ''suspected NP-C'' cases, and NPC1/NPC2 sequencing, plasma chitotriosidase (ChT), CCL18/PARC and sphingomyelinase levels were assessed. Based on findings in Period 1, plasma ChT and CCL18/PARC, and NP-C SI prediction scores were determined in a second group of patients between May 2012 and Apr 2014 (Period 2), and NPC1 and NPC2 were sequenced only in those with elevated ChT and/or elevated CCL18/PARC and/or NP-C SI =70. Filipin staining and 7-ketocholesterol (7-KC) measurements were performed in all patients with NP-C gene mutations, where possible. Results: In total across Periods 1 and 2, 10/236 (4%) patients had a confirmed diagnosis o NP-C based on gene sequencing (5/118 4.2%] in each Period): all of these patients had two causal NPC1 mutations. Single mutant NPC1 alleles were detected in 8/236 (3%) patients, overall. Positive filipin staining results comprised three classical and five variant biochemical phenotypes. No NPC2 mutations were detected. All patients with NPC1 mutations had high ChT activity, high CCL18/PARC concentrations and/or NP-C SI scores =70. Plasma 7-KC was higher than control cut-off values in all patients with two NPC1 mutations, and in the majority of patients with single mutations. Family studies identified three further NP-C patients. Conclusion: This approach may be very useful for laboratories that do not have mass spectrometry facilities and therefore, they cannot use other NP-C biomarkers for diagnosis

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    The epitaxy of gold

    Full text link

    Classification of current anticancer immunotherapies

    Get PDF
    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches
    corecore