247 research outputs found

    Dynamics in Colloidal Liquids near a Crossing of Glass- and Gel-Transition Lines

    Full text link
    Within the mode-coupling theory for ideal glass-transitions, the mean-squared displacement and the correlation function for density fluctuations are evaluated for a colloidal liquid of particles interacting with a square-well potential for states near the crossing of the line for transitions to a gel with the line for transitions to a glass. It is demonstrated how the dynamics is ruled by the interplay of the mechanisms of arrest due to hard-core repulsion and due to attraction-induced bond formation as well as by a nearby higher-order glass-transition singularity. Application of the universal relaxation laws for the slow dynamics near glass-transition singularities explains the qualitative features of the calculated time dependence of the mean-squared displacement, which are in accord with the findings obtained in molecular-dynamics simulation studies by Zaccarelli et. al [Phys. Rev. E 66, 041402 (2002)]. Correlation functions found by photon-correlation spectroscopy in a micellar system by Mallamace et. al [Phys. Rev. Lett. 84, 5431 2000)] can be interpreted qualitatively as a crossover from gel to glass dynamics.Comment: 13 pages, 12 figure

    An asteroseismic test of diffusion theory in white dwarfs

    Full text link
    The helium-atmosphere (DB) white dwarfs are commonly thought to be the descendants of the hotter PG1159 stars, which initially have uniform He/C/O atmospheres. In this evolutionary scenario, diffusion builds a pure He surface layer which gradually thickens as the star cools. In the temperature range of the pulsating DB white dwarfs (T_eff ~ 25,000 K) this transformation is still taking place, allowing asteroseismic tests of the theory. We have obtained dual-site observations of the pulsating DB star CBS114, to complement existing observations of the slightly cooler star GD358. We recover the 7 independent pulsation modes that were previously known, and we discover 4 new ones to provide additional constraints on the models. We perform objective global fitting of our updated double-layered envelope models to both sets of observations, leading to determinations of the envelope masses and pure He surface layers that qualitatively agree with the expectations of diffusion theory. These results provide new asteroseismic evidence supporting one of the central assumptions of spectral evolution theory, linking the DB white dwarfs to PG1159 stars.Comment: 7 pages, 3 figures, 3 tables, accepted for publication in A&

    Magnetic spin excitations in Mn doped GaAs : A model study

    Full text link
    We provide a quantitative theoretical model study of the dynamical magnetic properties of optimally annealed Ga1−x_{1-x}Mnx_xAs. This model has already been shown to reproduce accurately the Curie temperatures for Ga1−x_{1-x}Mnx_xAs. Here we show that the calculated spin stiffness are in excellent agreement with those which were obtained from ab-initio based studies. In addition, an overall good agreement is also found with available experimental data. We have also evaluated the magnon density of states and the typical density of states from which the "mobility edge", separating the extended from localized magnon states, was determined. The power of the model lies in its ability to be generalized for a broad class of diluted magnetic semiconductor materials, thus it bridges the gap between first principle calculations and model based studies.Comment: 5 pages, 5 figures, Text and some figures revised to match the accepted versio

    A search for solar-like oscillations in K giants in the globular cluster M4

    Full text link
    To expand the range in the colour-magnitude diagram where asteroseismology can be applied, we organized a photometry campaign to find evidence for solar-like oscillations in giant stars in the globular cluster M4. The aim was to detect the comb-like p-mode structure characteristic for solar-like oscillations in the amplitude spectra. The two dozen main target stars are in the region of the bump stars and have luminosities in the range 50-140 Lsun. We collected 6160 CCD frames and light curves for about 14000 stars were extracted. We obtain high quality light curves for the K giants, but no clear oscillation signal is detected. High precision differential photometry is possible even in very crowded regions like the core of M4. Solar-like oscillations are probably present in K giants, but the amplitudes are lower than classical scaling laws predict.Comment: 14 pages, 16 figures, accepted for publication in A&

    Spin dynamics in the diluted ferromagnetic Kondo lattice model

    Get PDF
    The interplay of disorder and competing interactions is investigated in the carrier-induced ferromagnetic state of the Kondo lattice model within a numerical finite-size study in which disorder is treated exactly. Competition between impurity spin couplings, stability of the ferromagnetic state, and magnetic transition temperature are quantitatively investigated in terms of magnon properties for different models including dilution, disorder, and weakly-coupled spins. A strong optimization is obtained for T_c at hole doping p << x, highlighting the importance of compensation in diluted magnetic semiconductors. The estimated T_c is in good agreement with experimental results for Ga_{1-x}Mn_x As for corresponding impurity concentration, hole bandwidth, and compensation. Finite-temperature spin dynamics is quantitatively studied within a locally self-consistent magnon renormalization scheme, which yields a substantial enhancement in T_c due to spin clustering, and highlights the nearly-paramagnetic spin dynamics of weakly-coupled spins. The large enhancement in density of low-energy magnetic excitations due to disorder and competing interactions results in a strong thermal decay of magnetization, which fits well with the Bloch form M_0(1-BT^{3/2}) at low temperature, with B of same order of magnitude as obtained in recent squid magnetization measurements on Ga_{1-x}Mn_x As samples.Comment: 13 pages, 14 figure

    Higher order glass-transition singularities in colloidal systems with attractive interactions

    Full text link
    The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass line, and a glass-glass-transition line are found in the temperature-density plane of the model. For small well-width values, the glass-glass-transition line terminates in a third order bifurcation point, i.e. in a A_3 (cusp) singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth order A_4 (swallow-tail) singularity at a critical well width. Close to the A_3 and A_4 singularities the decay of the density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.Comment: 19 pages, 12 figures, Phys. Rev. E, in prin

    Theory and simulation of gelation, arrest and yielding in attracting colloids

    Full text link
    We present some recent theory and simulation results addressing the phenomena of colloidal gelation at both high and low volume fractions, in the presence of short-range attractive interactions. We discuss the ability of mode-coupling theory and its adaptations to address situations with strong heterogeneity in density and/or dynamics. We include a discussion of the effect of attractions on the shear-thinning and yield behaviour under flow.Comment: 17 pages, 6 figure

    Discovery and analysis of p-mode and g-mode oscillations in the A-type primary of the eccentric binary HD 209295

    Get PDF
    We have discovered both intermediate-order gravity mode and low-order pressure mode pulsation in the same star, HD 209295. It is therefore both a Gamma Doradus and a Delta Scuti star, which makes it the first pulsating star to be a member of two classes. The star is a single-lined spectroscopic binary with an orbital period of 3.10575 d and an eccentricity of 0.352. Weak pulsational signals are found in both the radial velocity and line-profile variations, allowing us to show that the two highest-amplitude Gamma Doradus pulsation modes are consistent with l=1 and |m|=1. In our 280 h of BVI multi-site photometry we detected ten frequencies in the light variations, one in the Delta Scuti regime and nine in the Gamma Doradus domain. Five of the Gamma Doradus frequencies are exact integer multiples of the orbital frequency. This observation leads us to suspect they are tidally excited. Results of theoretical modeling (stability analysis, tidal excitation) were consistent with the observations. We could not detect the secondary component of the system in infrared photometry, suggesting that it may not be a main-sequence star. Archival data of HD 209295 show a strong ultraviolet excess, the origin of which is not known. The orbit of the primary is consistent with a secondary mass of M > 1.04 Msun indicative of a neutron star or a white dwarf companion.Comment: 18 pages, 18 figures, accepted for publication in MNRAS, shortened abstrac
    • 

    corecore