Within the mode-coupling theory for ideal glass-transitions, the mean-squared
displacement and the correlation function for density fluctuations are
evaluated for a colloidal liquid of particles interacting with a square-well
potential for states near the crossing of the line for transitions to a gel
with the line for transitions to a glass. It is demonstrated how the dynamics
is ruled by the interplay of the mechanisms of arrest due to hard-core
repulsion and due to attraction-induced bond formation as well as by a nearby
higher-order glass-transition singularity. Application of the universal
relaxation laws for the slow dynamics near glass-transition singularities
explains the qualitative features of the calculated time dependence of the
mean-squared displacement, which are in accord with the findings obtained in
molecular-dynamics simulation studies by Zaccarelli et. al [Phys. Rev. E 66,
041402 (2002)]. Correlation functions found by photon-correlation spectroscopy
in a micellar system by Mallamace et. al [Phys. Rev. Lett. 84, 5431 2000)] can
be interpreted qualitatively as a crossover from gel to glass dynamics.Comment: 13 pages, 12 figure