931 research outputs found
Normal modes and discovery of high-order cross-frequencies in the DBV white dwarf GD 358
We present a detailed mode identification performed on the 1994 Whole Earth Telescope (WET) run on GD 358. The results are compared with that obtained for the same star from the 1990 WET data. The two temporal spectra show very few qualitative differences, although amplitude changes are seen in most modes, including the disappearance of the mode identified as k=14 in the 1990 data. The excellent coverage and signal-to-noise ratio obtained during the 1994 run lead to the secure identification of combination frequencies up to fourth order, i.e. peaks that are sums or differences of up to four parent frequencies, including a virtually complete set of second-order frequencies, as expected from harmonic distortion. We show how the third-order frequencies are expected to affect the triplet structure of the normal modes by back-interacting with them. Finally, a search for â=2 modes was unsuccessful, not verifying the suspicion that such modes had been uncovered in the 1990 data set
Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234
We present the analysis of a total of 177h of high-quality optical
time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC
20058-5234. The bulk of the observations (135h) were obtained during a WET
campaign (XCOV15) in July 1997 that featured coordinated observing from 4
southern observatory sites over an 8-day period. The remaining data (42h) were
obtained in June 2004 at Mt John Observatory in NZ over a one-week observing
period. This work significantly extends the discovery observations of this
low-amplitude (few percent) pulsator by increasing the number of detected
frequencies from 8 to 18, and employs a simulation procedure to confirm the
reality of these frequencies to a high level of significance (1 in 1000). The
nature of the observed pulsation spectrum precludes identification of unique
pulsation mode properties using any clearly discernable trends. However, we
have used a global modelling procedure employing genetic algorithm techniques
to identify the n, l values of 8 pulsation modes, and thereby obtain
asteroseismic measurements of several model parameters, including the stellar
mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those
derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We
also present persuasive evidence from apparent rotational mode splitting for
two of the modes that indicates this compact object is a relatively rapid
rotator with a period of 2h. In direct analogy with the corresponding
properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude
pulsation behaviour of EC 20058 is entirely consistent with its inferred
effective temperature, which indicates it is close to the blue edge of the DBV
instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte
White dwarf cooling and large extra dimensions
Theories of fundamental interactions with large extra dimensions have
recently become very popular. Astrophysical bounds from the Sun, red-giants and
SN1987a have already been derived by other authors for the theory proposed by
Arkani-Hamed, Dimopoulos and Dvali. In this paper we consider G117-B15A
pulsating white dwarf (ZZ Ceti star) for which the secular rate at which the
period of its fundamental mode increases has been accurately measured and
claimed that this mode of G117-B15A is perhaps the most stable oscillation ever
recorded in the optical band. Because an additional channel of energy loss
(Kaluza-Klein gravitons) would speed up the cooling rate, one is able to use
the aforementioned stability to derive a bound on theories with large extra
dimensions. Within the framework of the theory with large extra dimensions
proposed by Arkani-Hamed, Dimopoulos and Dvali we find the lower bound on
string comapctification scale which is more stringent than solar or red-giant
bounds.Comment: 9 pages,LaTeX, new references added. Phys. Rev. D in pres
A search for periodic and quasi-periodic photometric behavior in the cataclysmic variable TT arietis
Observations of TT Ari obtained at 11 observatories (campaign TT Ari-94) during 258 hr were carried out to study optical variability on timescales from minutes to weeks. The best-fit primary photometric period determined from 16 nights of data obtained at the Dushak-Eregdag station of the Odessa State University is P = 0d.133160 ± 0d.000004 with a mean amplitude of 0.0513 ± 0.0008 mag. This new primary photometric period is larger than that obtained during the TT Ari-88 campaign and is well outside the range of estimates published since 1961. Contrary to previous findings, the "5-7 hr" secondary photometric period is not seen. Our observations do show evidence for periods of 2d.916 and 0d.3040 with amplitudes of 43 and 25 mmag, respectively. The beat period between the spectroscopic and photometric periods is not seen. No coherent oscillations in the range f = 10-2500 cycles day-1 are found. The highest peaks in the power spectrum cover the wide range of 24-139 cycles day-1. In the mean periodogram, the highest peak corresponds to 21 and 30 minutes for the largest sets of observations, i.e., those obtained at Odessa and Krakow Universities, respectively. In the instrumental B system, variations with an amplitude exceeding 0.011 mag occur 8 times (from 33 runs) at 24 minutes. We conclude that quasi-periodic variations occur at a few preferred timescales rather than at a relatively stable period with a secular decrease. In the frequency range 90-900 cycles day-1, the power spectrum obeys a power law with a slope ranging from γ = 1.3 to 2.6 for different runs
Pulsating White Dwarf Stars and Precision Asteroseismology
Galactic history is written in the white dwarf stars. Their surface
properties hint at interiors composed of matter under extreme conditions. In
the forty years since their discovery, pulsating white dwarf stars have moved
from side-show curiosities to center stage as important tools for unraveling
the deep mysteries of the Universe. Innovative observational techniques and
theoretical modeling tools have breathed life into precision asteroseismology.
We are just learning to use this powerful tool, confronting theoretical models
with observed frequencies and their time rate-of-change. With this tool, we
calibrate white dwarf cosmochronology; we explore equations of state; we
measure stellar masses, rotation rates, and nuclear reaction rates; we explore
the physics of interior crystallization; we study the structure of the
progenitors of Type Ia supernovae, and we test models of dark matter. The white
dwarf pulsations are at once the heartbeat of galactic history and a window
into unexplored and exotic physics.Comment: 70 pages, 11 figures, to be published in Annual Review of Astronomy
and Astrophysics 200
New Whole Earth Telescope observations of CD-24 7599: steps towards ÎŽ Scuti star seismology
92 h of new Whole Earth Telescope observations have been acquired for the ÎŽ Scuti star CD-24 7599. All the seven pulsation modes reported by Handler et al. are confirmed. However, significant amplitude variations which are not caused by beating of closely spaced frequencies occurred within two years. Analysing the combined data of both WET runs, we detect six further pulsation modes, bringing the total number up to 13. We also examine our data for high-frequency pulsations similar to those exhibited by rapidly oscillating Ap stars, but we do not find convincing evidence for variability in this frequency domai
EC 10246-2707: a new eclipsing sdB + M dwarf binaryâ
We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary,
EC 10246-2707, and present multi-colour photometric and spectroscopic observations
of this system. Similar to other HW Vir-type binaries, the light curve shows both
primary and secondary eclipses, along with a strong reflection effect from the M dwarf;
no intrinsic light contribution is detected from the cool companion. The orbital period
is 0.118 507 993 6 ± 0.000 000 000 9 days, or about three hours. Analysis of our time-
series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km sâ1 for
the sdB and best-fitting atmospheric parameters of Teff = 28900 ± 500 K, log g =
5.64 ± 0.06, and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique
solution from modeling the light curve, the bestâfitting model has an sdB mass of 0.45
Mâ and a cool companion mass of 0.12 Mâ. These results are roughly consistent with
a canonicalâmass sdB and M dwarf separated by a ⌠0.84 Râ. We find no evidence of
pulsations in the light curve and limit the amplitude of rapid photometric oscillations
to < 0.08%. Using 15 years of eclipse timings, we construct an O-C diagram but find
no statistically significant period changes; we rule out | ËP | > 7.2Ă10â12. If EC 10246-
2707 evolves into a cataclysmic variable, its period should fall below the famous CV
period gap.Web of Scienc
The LOFAR Two-Metre Sky Survey (LoTSS): VI. Optical identifications for the second data release
The second data release of the LOFAR Two-Metre Sky Survey (LoTSS) covers 27%
of the northern sky, with a total area of deg. The high
angular resolution of LOFAR with Dutch baselines (6 arcsec) allows us to carry
out optical identifications of a large fraction of the detected radio sources
without further radio followup; however, the process is made more challenging
by the many extended radio sources found in LOFAR images as a result of its
excellent sensitivity to extended structure. In this paper we present source
associations and identifications for sources in the second data release based
on optical and near-infrared data, using a combination of a likelihood-ratio
cross-match method developed for our first data release, our citizen science
project Radio Galaxy Zoo: LOFAR, and new approaches to algorithmic optical
identification, together with extensive visual inspection by astronomers. We
also present spectroscopic or photometric redshifts for a large fraction of the
optical identifications. In total 4,116,934 radio sources lie in the area with
good optical data, of which 85% have an optical or infrared identification and
58% have a good redshift estimate. We demonstrate the quality of the dataset by
comparing it with earlier optically identified radio surveys. This is by far
the largest ever optically identified radio catalogue, and will permit robust
statistical studies of star-forming and radio-loud active galaxies.Comment: 29 pages. Accepted by A&A; data products available at
https://lofar-surveys.org/dr2_release.htm
Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare : Improved Orbital Parameters
Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the BBH model for OJ 287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287's central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole "no-hair theorem" at the 10% level.Peer reviewe
- âŠ