3,983 research outputs found

    Small scale structure in diffuse molecular gas from repeated FUSE and visible spectra of HD 34078

    Get PDF
    We present preliminary results from an ongoing program devoted to a study of small scale structure in the spatial distribution of molecular gas. Our work is based on multi-epoch FUSE and visible observations of HD34078. A detailed comparison of H2, CH and CH+ absorption lines is performed. No short term variations are seen (except for highly excited H2) but long-term changes in N(CH) are clearly detected when comparing our data to spectra taken about 10 years ago.Comment: 4 pages, 2 figures, To appear in the Proceedings of the XVII IAP Colloquium "Gaseous Matter in Galaxies and Intergalactic Space

    A far UV study of interstellar gas towards HD34078: high excitation H2 and small scale structure - Based on observations performed by the FUSE mission and at the CFHT telescope

    Full text link
    To investigate the presence of small scale structure in the spatial distribution of H2 molecules we have undertaken repeated FUSE UV observations of the runaway O9.5V star, HD34078. In this paper we present five spectra obtained between January 2000 and October 2002. These observations reveal an unexpectedly large amount of highly excited H2. Column densities for H2 levels from (v = 0, J = 0) up to (v = 0, J = 11) and for several v = 1 and v = 2 levels are determined. These results are interpreted in the frame of a model involving essentially two components: i) a foreground cloud (unaffected by HD34078) responsible for the H2 (J = 0, 1), CI, CH, CH+ and CO absorptions; ii) a dense layer of gas (n = 10E4 cm-3) close to the O star and strongly illuminated by its UV flux which accounts for the presence of highly excited H2. Our model successfully reproduces the H2 excitation, the CI fine-structure level populations as well as the CH, CH+ and CO column densities. We also examine the time variability of H2 absorption lines tracing each of these two components. From the stability of the J = 0, 1 and 2 damped H2 profiles we infer a 3 sigma upper limit on column density variations Delta(N(H2))/N(H2) of 5% over scales ranging from 5 to 50 AU. This result clearly rules out any pronounced ubiquitous small scale "density" structure of the kind apparently seen in HI. The lines from highly excited gas are also quite stable (equivalent to Delta(N)/N <= 30%) indicating i) that the ambient gas through which HD34078 is moving is relatively uniform and ii) that the gas flow along the shocked layer is not subject to marked instabilitie

    The BinaMIcS project: understanding the origin of magnetic fields in massive stars through close binary systems

    Full text link
    It is now well established that a fraction of the massive (M>8 Msun) star population hosts strong, organised magnetic fields, most likely of fossil origin. The details of the generation and evolution of these fields are still poorly understood. The BinaMIcS project takes an important step towards the understanding of the interplay between binarity and magnetism during the stellar formation and evolution, and in particular the genesis of fossil fields, by studying the magnetic properties of close binary systems. The components of such systems are most likely formed together, at the same time and in the same environment, and can therefore help us to disentangle the role of initial conditions on the magnetic properties of the massive stars from other competing effects such as age or rotation. We present here the main scientific objectives of the BinaMIcS project, as well as preliminary results from the first year of observations from the associated ESPaDOnS and Narval spectropolarimetric surveys.Comment: To appear in New Windows on Massive Stars, proceedings of the IAU Symposium 30

    Herschel observations of interstellar chloronium

    Get PDF
    Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared (HIFI), we have observed para-chloronium (H2Cl+) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along the sight-lines to the bright submillimeter continuum sources Sgr A (+50 km/s cloud) and W31C. Both the para-H2-35Cl+ and para-H2-37Cl+ isotopologues were detected, through observations of their 1(11)-0(00) transitions at rest frequencies of 485.42 and 484.23 GHz, respectively. For an assumed ortho-to-para ratio of 3, the observed optical depths imply that chloronium accounts for ~ 4 - 12% of chlorine nuclei in the gas phase. We detected interstellar chloronium emission from two sources in the Orion Molecular Cloud 1: the Orion Bar photodissociation region and the Orion South condensation. For an assumed ortho-to-para ratio of 3 for chloronium, the observed emission line fluxes imply total beam-averaged column densities of ~ 2.0E+13 cm-2 and ~ 1.2E+13 cm-2, respectively, for chloronium in these two sources. We obtained upper limits on the para-H2-35Cl+ line strengths toward H2 Peak 1 in the Orion Molecular cloud and toward the massive young star AFGL 2591. The chloronium abundances inferred in this study are typically at least a factor ~10 larger than the predictions of steady-state theoretical models for the chemistry of interstellar molecules containing chlorine. Several explanations for this discrepancy were investigated, but none has proven satisfactory, and thus the large observed abundances of chloronium remain puzzling.Comment: Accepted for publication in the Astrophysical Journa

    Modeling of diffuse molecular gas applied to HD 102065 observations

    Full text link
    Aims. We model a diffuse molecular cloud present along the line of sight to the star HD 102065. We compare our modeling with observations to test our understanding of physical conditions and chemistry in diffuse molecular clouds. Methods. We analyze an extensive set of spectroscopic observations which characterize the diffuse molecular cloud observed toward HD 102065. Absorption observations provide the extinction curve, H2, C I, CO, CH, and CH+ column densities and excitation. These data are complemented by observations of CII, CO and dust emission. Physical conditions are determined using the Meudon PDR model of UV illuminated gas. Results. We find that all observational results, except column densities of CH, CH+ and H2 in its excited (J > 2) levels, are consistent with a cloud model implying a Galactic radiation field (G~0.4 in Draine's unit), a density of 80 cm-3 and a temperature (60-80 K) set by the equilibrium between heating and cooling processes. To account for excited (J >2) H2 levels column densities, an additional component of warm (~ 250K) and dense (nH>10^4 cm-3) gas within 0.03 pc of the star would be required. This solution reproduces the observations only if the ortho-to-para H2 ratio at formation is 1. In view of the extreme physical conditions and the unsupported requirement on the ortho-to-para ratio, we conclude that H2 excitation is most likely to be accounted for by the presence of warm molecular gas within the diffuse cloud heated by the local dissipation of turbulent kinetic energy. This warm H2 is required to account for the CH+ column density. It could also contribute to the CH abundance and explain the inhomogeneity of the CO abundance indicated by the comparison of absorption and emission spectra.Comment: 10 pages, 17 figures. Accepted for publication in Astronomy and Astrophysics. Typos correcte

    Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines

    Full text link
    We present column density measurements of the HD molecule in the interstellar gas toward 17 Galactic stars. The values for the seven most heavily reddened sightlines, with E(B-V) = 0.38-0.72, are derived from observations with the Far Ultraviolet Spectroscopic Explorer (FUSE). The other ten values are from a reanalysis of spectra obtained with Copernicus. In all cases, high-resolution ground-based observations of KI and/or the CH molecule were used to constrain the gas velocity structure and to correct for saturation effects. Comparisons of the column densities HD, CH, CN, and KI in these 17 sightlines indicate that HD is most tightly correlated with CH. Stringent lower limits to the interstellar D/H ratio, derived from the HD/2H2 ratio, range from 3.7 10^(-7) to 4.3 10^(-6). Our results also suggest that the HD/H2 ratio increases with the molecular fraction f(H2) and that the interstellar D/H ratio might be obtained from HD by probing clouds with f(H2) = 1. Finally, we note an apparent relationship between the molecular fractions of hydrogen and deuterium.Comment: Accepted in A&

    Gas morphology and energetics at the surface of PDRs: new insights with Herschel observations of NGC 7023

    Get PDF
    We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field. Using Herschel-HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023 is the prototype of a PDR illuminated by a B2V star and is one of the key targets of Herschel. Our approach consists in determining the energetics of the region by combining the information carried by the mid-IR spectrum (extinction by classical grains, emission from very small dust particles) with that of the main gas coolant lines. In this letter, we discuss more specifically the intensity and line profile of the 158 micron (1901 GHz) [CII] line measured by HIFI and provide information on the emitting gas. We show that both the [CII] emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) arise from the regions located in the transition zone between atomic and molecular gas. Using the Meudon PDR code and a simple transfer model, we find good agreement between the calculated and observed [CII] intensities. HIFI observations of NGC 7023 provide the opportunity to constrain the energetics at the surface of PDRs. Future work will include analysis of the main coolant line [OI] and use of a new PDR model that includes PAH-related species.Comment: Accepted for publication in Astronomy and Astrophysics Letters (Herschel HIFI special issue), 5 pages, 5 figure

    The Dark Molecular Gas

    Full text link
    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H_2 mass. However, a significant H_2 mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas phase carbon resides in C or C+. Here, H_2 self-shields or is shielded by dust from UV photodissociation, where as CO is photodissociated. This H_2 gas is "dark" in molecular transitions because of the absence of CO and other trace molecules, and because H_2 emits so weakly at temperatures 10 K < T < 100 K typical of this molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant (~ 0.3 for average visual extinction through the cloud with mean A_V ~ 8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as mean A_V, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing mean A_V, since relatively more molecular H_2 material lies outside the CO region in this case.Comment: 38 page, 11 figures, Accepted for Publication in ApJ, corrected citation and typo in Appendix
    corecore