91 research outputs found

    On Masked Pre-training and the Marginal Likelihood

    Full text link
    Masked pre-training removes random input dimensions and learns a model that can predict the missing values. Empirical results indicate that this intuitive form of self-supervised learning yields models that generalize very well to new domains. A theoretical understanding is, however, lacking. This paper shows that masked pre-training with a suitable cumulative scoring function corresponds to maximizing the model's marginal likelihood, which is de facto the Bayesian model selection measure of generalization. Beyond shedding light on the success of masked pre-training, this insight also suggests that Bayesian models can be trained with appropriately designed self-supervision. Empirically, we confirm the developed theory and explore the main learning principles of masked pre-training in large language models

    Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants

    Get PDF
    Burkholderia phytofirmans PsJN is a naturally occurring plant-associated bacterial endophyte that effectively colonizes a wide range of plants and stimulates their growth and vitality. Here we analyze whole genomes, of PsJN and of eight other endophytic bacteria. This study illustrates that a wide spectrum of endophytic life styles exists. Although we postulate the existence of typical endophytic traits, no unique gene cluster could be exclusively linked to the endophytic lifestyle. Furthermore, our study revealed a high genetic diversity among bacterial endophytes as reflected in their genotypic and phenotypic features. B. phytofirmans PsJN is in many aspects outstanding among the selected endophytes. It has the biggest genome consisting of two chromosomes and one plasmid, well-equipped with genes for the degradation of complex organic compounds and detoxification, e.g., 24 glutathione-S-transferase (GST) genes. Furthermore, strain PsJN has a high number of cell surface signaling and secretion systems and harbors the 3-OH-PAME quorum-sensing system that coordinates the switch of free-living to the symbiotic lifestyle in the plant-pathogen R. solanacearum. The ability of B. phytofirmans PsJN to successfully colonize such a wide variety of plant species might be based on its large genome harboring a broad range of physiological functions

    Correction of joint angles from kinect for balance exercising and assessment

    Full text link
    [EN] The new generation of videogame interfaces such as Microsoft's Kinect opens the possibility of implementing exercise programs for physical training, and of evaluating and reducing the risks of elderly people falling. However, applications such as these might require measurements of joint kinematics that are more robust and accurate than the standard output given by the available middleware. This article presents a method based on particle filters for calculating joint angles from the positions of the anatomical points detected by PrimeSense's NITE software. The application of this method to the measurement of lower limb kinematics reduced the error by one order of magnitude, to less than 10 degrees, except for hip axial rotation, and it was advantageous over inverse kinematic analysis, in ensuring a robust and smooth solution without singularities, when the limbs are out-stretched and anatomical landmarks are aligned.This work has been undertaken within the framework of the iStoppFalls project, which has received funding from the European Community (grant agreement FP7-ICT-2011-7-287361) and the Australian Government.De Rosario Martínez, H.; Belda Lois, JM.; Fos Ros, F.; Medina Ripoll, E.; Poveda Puente, R.; Kroll, M. (2014). Correction of joint angles from kinect for balance exercising and assessment. Journal of Applied Biomechanics. 30(2):294-299. https://doi.org/10.1123/jab.2013-0062S29429930

    Neratinib protects pancreatic beta cells in diabetes

    Get PDF
    The loss of functional insulin-producing β-cells is a hallmark of diabetes. Mammalian sterile 20-like kinase 1 (MST1) is a key regulator of pancreatic β-cell death and dysfunction; its deficiency restores functional β-cells and normoglycemia. The identification of MST1 inhibitors represents a promising approach for a β-cell-protective diabetes therapy. Here, we identify neratinib, an FDA-approved drug targeting HER2/EGFR dual kinases, as a potent MST1 inhibitor, which improves β-cell survival under multiple diabetogenic conditions in human islets and INS-1E cells. In a pre-clinical study, neratinib attenuates hyperglycemia and improves β-cell function, survival and β-cell mass in type 1 (streptozotocin) and type 2 (obese Leprdb/db) diabetic mouse models. In summary, neratinib is a previously unrecognized inhibitor of MST1 and represents a potential β-cell-protective drug with proof-of-concept in vitro in human islets and in vivo in rodent models of both type 1 and type 2 diabetes

    The lancet weight determines wheal diameter in response to skin prick testing with histamine

    Get PDF
    BACKGROUND:Skin prick test (SPT) is a common test for diagnosing immunoglobulin E-mediated allergies. In clinical routine, technicalities, human errors or patient-related biases, occasionally results in suboptimal diagnosis of sensitization. OBJECTIVE:Although not previously assessed qualitatively, lancet weight is hypothesized to be important when performing SPT to minimize the frequency of false positives, false negatives, and unwanted discomfort. METHODS:Accurate weight-controlled SPT was performed on the volar forearms and backs of 20 healthy subjects. Four predetermined lancet weights were applied (25 g, 85 g, 135 g and 265 g) using two positive control histamine solutions (1 mg/mL and 10 mg/mL) and one negative control (saline). A total of 400 SPTs were conducted. The outcome parameters were: wheal size, neurogenic inflammation (measured by superficial blood perfusion), frequency of bleeding, and the lancet provoked pain response. RESULTS:The mean wheal diameter increased significantly as higher weights were applied to the SPT lancet, e.g. from 3.2 ± 0.28 mm at 25 g to 5.4 ± 1.7 mm at 265 g (p<0.01). Similarly, the frequency of bleeding, the provoked pain, and the neurogenic inflammatory response increased significantly. At 265 g saline evoked two wheal responses (/160 pricks) below 3 mm. CONCLUSION AND CLINICAL RELEVANCE:The applied weight of the lancet during the SPT-procedure is an important factor. Higher lancet weights precipitate significantly larger wheal reactions with potential diagnostic implications. This warrants additional research of the optimal lancet weight in relation to SPT-guidelines to improve the specificity and sensitivity of the procedure

    Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: a report of the international immuno-oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder

    Get PDF
    Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder. Here we present a public resource of functional genomic data from the dorsolateral prefrontal cortex (DLPFC; Brodmann areas 9 and 46) of 986 individuals from 4 separate brain banks, including 353 diagnosed with schizophrenia and 120 with bipolar disorder. The genomic data include RNA-seq and SNP genotypes on 980 individuals, and ATAC-seq on 269 individuals, of which 264 are a subset of individuals with RNA-seq. We have performed extensive preprocessing and quality control on these data so that the research community can take advantage of this public resource available on the Synapse platform at http://CommonMind.org

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: a report of the international immuno‐oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer (BC) has been well established, and tumor-infiltrating lymphocytes (TILs) have emerged as a predictive and prognostic biomarker for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) breast cancer (TNBC) and HER2-positive breast cancer. How computational assessment of TILs can complement manual TIL-assessment in trial- and daily practices is currently debated and still unclear. Recent efforts to use machine learning (ML) for the automated evaluation of TILs show promising results. We review state-of-the-art approaches and identify pitfalls and challenges by studying the root cause of ML discordances in comparison to manual TILs quantification. We categorize our findings into four main topics; (i) technical slide issues, (ii) ML and image analysis aspects, (iii) data challenges, and (iv) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns, or design choices in the computational implementation. To aid the adoption of ML in TILs assessment, we provide an in-depth discussion of ML and image analysis including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial- and routine clinical management of patients with TNBC

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD
    corecore