21 research outputs found

    Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

    Get PDF
    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments

    Searches for continuous gravitational waves from nine young supernova remnants

    Get PDF
    We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as 4×10254\times10^{-25} on intrinsic strain, 2×1072\times10^{-7} on fiducial ellipticity, and 4×1054\times10^{-5} on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.Comment: Science summary available at http://www.ligo.org/science/Publication-S6DirectedSNR/index.ph

    Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors

    Get PDF
    Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz–1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of Oð10Þfor GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GWemission energy of 10−2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.122004publishedVersionFil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Fil: Domínguez, E. Argentinian Gravitational Wave Group; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Reula, O. Argentinian Gravitational Wave Group; Argentina.Fil: Ortega, W. Argentinian Gravitational Wave Group; Argentina.Fil: Wolovick, N. Argentinian Gravitational Wave Group; Argentina.Fil: Schilman, M. Argentinian Gravitational Wave Group; Argentina.Física de Partículas y Campo

    Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

    Get PDF
    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10210^{-2}\,M_\odotc2^2 at 150\sim 150\,Hz with 60\sim 60\,ms duration, and high-energy neutrino emission of 105110^{51}\,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×1021.6 \times 10^{-2}\,Mpc3^{-3}yr1^{-1}. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era

    A directed search for gravitational waves from Scorpius X-1 with initial LIGO

    Get PDF
    19 pages, 8 figuresInternational audienceWe present results of a search for continuously-emitted gravitational radiation, directed at the brightest low-mass X-ray binary, Scorpius X-1. Our semi-coherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent F\mathcal{F}-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3e-24 and 8e-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof of principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ~1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector

    Erratum: Searches for continuous gravitational waves from nine young supernova remnants (2015, ApJ, 813, 39)

    Get PDF
    We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as 4×10254\times10^{-25} on intrinsic strain, 2×1072\times10^{-7} on fiducial ellipticity, and 4×1054\times10^{-5} on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes

    Erratum: "Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants" (2015, ApJ, 813, 39)

    No full text
    Equation (7) of the published article (Aasi et al. 2015) is in error; it should read (Equation presented). The upper limits on ò presented in the published article are unaffected by this error. Equation (8) of the published article is in error; it should read (Equation presented) The upper limits on α presented in Figure 3 and Table 4 of the published article were computed incorrectly. The revised Figure 3 (bottom) shows the corrected upper limits on α for the G266.2-1.2 (Vela Jr.) wide search. The revised Table 4 is provided here. The correct lowest upper limit on α (quoted in the Abstract of the published article) is 3 × 10-6. Figure 4 shows the incorrect and corrected upper limits on α for the G266.2-1.2 (Vela Jr.) wide search, which have been surpassed by upper limits from Abbott et al. (2019)
    corecore