7 research outputs found

    Paleoseismology, seismic hazard and volcano-tectonic interactions in the Tongariro Volcanic Centre, New Zealand : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, (Palmerston North, Manawatu), New Zealand

    Get PDF
    Content removed from appendices due to copyright reasons: Gómez-Vasconcelos, M. G., Villamor, P., Cronin, S. J., Procter, J., Kereszturi, G., Palmer, A., Townsend, D., … Ashraf, S. (2016). Earthquake history at the eastern boundary of the South Taupo Volcanic Zone, New Zealand. New Zealand Journal of Geology and Geophysics, 59(4), 522-543. doi: 10.1080/00288306.2016.1195757At the southern part of the Taupo Rift, crustal extension is accommodated by a combination of normal faults and dike intrusions, and the Tongariro Volcanic Centre coexists with faults from the Ruapehu and Tongariro grabens. This close coexistence and volcanic vent alignment parallel to the regional faults has always raised the question of their possible interaction. Further, many periods of high fault slip-rate seem to coincide with explosive volcanic eruptions. For some periods these coincidences are shown to be unrelated; however, it remains important to evaluate the potential link between them. In the Tongariro Graben, the geological extension was quantified and compared to the total geodetic extension, showing that 78 to 95% of the extension was accommodated by tectonic faults and only 5 to 22% by dike intrusions. Within the latter, 4 to 5% was accommodated by volcanic eruptions and 18 to 19% by arrested dike intrusions, with an unknown percentage of hybrid extension. Short-term variations in fault slip-rates and volcanic activity for the last 100 ka in the Tongariro Volcanic Centre may have been influenced by static stress transfer between adjacent faults (within <20 km from the source) and dike intrusions (within <10 km), or by fluctuations in magma input through time. The amount of magma involved in the rifting process will condition the predominant extension mechanism and thus influence the predominant type of volcano-tectonic interaction. A record of volcanic and seismic activity for the last 250 ka was assembled, from new and published studies. This was used to analyse the spatiotemporal associations between volcanic and seismic activity in the southern Taupo Rift. Data on the faulting history, slip-rate variation and seismic hazard of the Upper Waikato Stream, Wahianoa, Waihi and Poutu faults formed the core of the analysis. These faults are capable of producing a MW 7.2 earthquake with a single-event displacement of 2.9 m, posing an important hazard to the region. Data gathered in this study provides an update to the National Seismic Hazard Model for New Zealand

    “RELACIÓN ENTRE LA GEOLOGÍA DE LOS FLUJOS PIROCLÁSTICOS Y LA VEGETACIÓN EN LA REGIÓN SUR DE LA CALDERA DE VILLA MADERO (CVM), MICHOACÁN, MÉXICO.”

    No full text
    La Caldera de Villa Madero (CVM) es una estructura volcánica no conocida en la porción central del Cinturón Volcánico Trans-Mexicano (CVTM). Se localiza al noreste del estado de Michoacán; a 50 km al sur de la ciudad de Morelia; entre las coordenadas 19°23’ y 18°56’ de latitud norte y 101°22’ y 101°12’ de longitud oeste, a una altura entre los 500 y 2800 msnm. La CVM es una estructura volcánica de gran tamaño, su estudio comprende a más de 55 volcanes; en total, cubre un área aproximada de 495 km2; mide 8.7 km de diámetro y su lengua principal de flujos piroclásticos mide 35.5 km de longitud hacia el sur, cubriendo un área de ~205.48 km2 y un volumen de ~24.925 km3. Primeramente se realizó la descripción del área de estudio, mediante el uso de fotografías aéreas, imágenes satelitales, mapas topográficos y modelos digitales de elevación se realizaron los análisis de clima, hidrología, suelos, fisiografía, vegetación y uso de suelo. Así mismo, en base a los análisis geomorfológicos, petrográficos, estructurales, estratigrafía vulcanológica y el estudio granulométrico, se creó el primer mapa geológico y el modelo de evolución para la CVM. Se diferencian dos provincias biogeográficas para la CVM y sus depósitos piroclásticos; denominados región de Mil Cumbres y Depresión del Balsas. La CVM está incluida en la región de Mil Cumbres, la cuál se encuentra comprendida dentro de la provincia fisiográfica del CVTM; se caracteriza por su relieve ondulado y montañoso, posee un clima templado subhúmedo con lluvias en verano (Correa 2003), en su gran mayoría está cubierta por bosque de pino-encino (2000 a 2800 msnm) y por bosque de encino (1200 a 2000 msnm). La lengua principal de flujos piroclásticos está incluida en la Depresión del Balsas, en la provincia fisiográfica de la Sierra Madre del Sur; presenta un clima cálido subhúmedo con lluvias en verano (Correa 2003), está cubierta en su mayor parte por bosque tropical caducifolio y pastizal inducido, con altitudes que van desde 500 msnm hasta 1200 msnm. La CVM forma parte del alto estructural NE-SW, la cuál podría ser la prolongación hacia el SW de la de la Sierra de Mil Cumbres; está alineada con el graben de Cuitzeo, junto con las calderas de Amealco, Los Azufres, La Escalera y Atécuaro

    Crustal extension in the Tongariro graben, New Zealand: Insights into volcano-tectonic interactions and active deformation in a young continental rift

    No full text
    In volcanic rift zones, surface faulting from tectonic faults or from dike intrusions can be difficult to discriminate because they have similar geomorphic expression. At the Tongariro graben, near the southern end of the Taupo Rift, New Zealand, crustal extension over the last 350 k.y. has been accommodated by a combination of magma intrusion and tectonic faulting. Normal faults prevail along this 30-km-wide, NNE-oriented graben, with vents of the Tongariro volcanic complex lying parallel to and overlapping the graben axis. This study quantifies the geological extension at the Tongariro graben (7 ± 1.2 mm/yr since 20 ka) and the relative contributions from tectonic faulting and dike intrusion. Field observations were used to interpret fault geometry and activity. To discriminate between tectonic faulting and that associated with dike intrusion (volcano-tectonic), theoretical fault dislocations were modeled from dike intrusion for likely fault-dike spatial relationships and compared to measured displacements. Most of the mapped faults are tectonic in origin. The calculations indicate that the rift-bounding normal faults (National Park and Upper Waikato Stream faults) and the intrarift inward-dipping faults (Waihi and Poutu faults) accommodate 78%–95% (5.8–7.0 mm/yr) of the total extension across the graben (tectonic extension), while dike intrusions could accommodate only 5%–22% (0.4–1.6 mm/yr; magmatic extension), from which 4%–5% is associated with volcanic eruptions and the remainder with deep arrested dikes. These results help to refine the seismic and volcanic hazards of the region and raise questions on the spectrum of volcano-tectonic interactions possible in similar continental rifts worldwide

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore