106 research outputs found

    One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Get PDF
    The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing

    Cool white dwarfs as standards for infrared observations

    Get PDF
    In the era of modern digital sky surveys, uncertainties in the flux of stellar standards are commonly the dominant systematic error in photometric calibration and can often affect the results of higher level experiments. The Hubble Space Telescope (HST) spectrophotometry, which is based on computed model atmospheres for three hot (Teff>30000 K) pure hydrogen (DA) white dwarfs, is currently considered the most reliable and internally consistent flux calibration. However, many next-generation facilities (e.g. Harmoni on E-ELT, Euclid, and JWST) will focus on IR observations, a regime in which white dwarf calibration has not yet been robustly tested. Cool DA white dwarfs have energy distributions that peak close to the optical or near-infrared, do not have shortcomings from UV metal line blanketing, and have a reasonably large sky density (≃4 deg−2 at G < 20), making them, potentially, excellent calibrators. Here, we present a pilot study based on STIS + WFC3 observations of two bright DA white dwarfs to test whether targets cooler than current hot primary standards (Teff<20000 K) are consistent with the HST flux scale. We also test the robustness of white dwarf models in the IR regime from an X-shooter analysis of Paschen lines and by cross-matching our previously derived Gaia white dwarf catalogue with observations obtained with 2MASS, UKIDSS, VHS, and WISE

    Stellar archaeology with Gaia: the Galactic white dwarf population

    Full text link
    Gaia will identify several 1e5 white dwarfs, most of which will be in the solar neighborhood at distances of a few hundred parsecs. Ground-based optical follow-up spectroscopy of this sample of stellar remnants is essential to unlock the enormous scientific potential it holds for our understanding of stellar evolution, and the Galactic formation history of both stars and planets.Comment: Summary of a talk at the 'Multi-Object Spectroscopy in the Next Decade' conference in La Palma, March 2015, to be published in ASP Conference Series (editors Ian Skillen & Scott Trager

    White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Linewidths: Kepler Observations of 27 Pulsating DA White Dwarfs Through K2 Campaign 8

    Get PDF
    We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere white dwarfs (DAVs, a.k.a. ZZ Ceti stars) observed by the Kepler space telescope up to K2 Campaign 8, an extensive compilation of observations with unprecedented duration (>75 days) and duty cycle (>90%). The space-based photometry reveals pulsation properties previously inaccessible to ground-based observations. We observe a sharp dichotomy in oscillation mode linewidths at roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s have substantially broader mode linewidths, more reminiscent of a damped harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also permits extensive mode identification: We identify the spherical degree of 61 out of 154 unique radial orders, providing direct constraints of the rotation period for 20 of these 27 DAVs, more than doubling the number of white dwarfs with rotation periods determined via asteroseismology. We also obtain spectroscopy from 4m-class telescopes for all DAVs with Kepler photometry. Using these homogeneously analyzed spectra we estimate the overall mass of all 27 DAVs, which allows us to measure white dwarf rotation as a function of mass, constraining the endpoints of angular momentum in low- and intermediate-mass stars. We find that 0.51-to-0.73-solar-mass white dwarfs, which evolved from 1.7-to-3.0-solar-mass ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Finally, we announce an online repository for our Kepler data and follow-up spectroscopy, which we collect at http://www.k2wd.org.Comment: 33 pages, 31 figures, 5 tables; accepted for publication in ApJS. All raw and reduced data are collected at http://www.k2wd.or

    4MOST Consortium Survey 3: Milky Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR)

    Full text link
    The mechanisms of the formation and evolution of the Milky Way are encoded in the orbits, chemistry and ages of its stars. With the 4MOST MIlky way Disk And BuLgE Low-Resolution Survey (4MIDABLE-LR) we aim to study kinematic and chemical substructures in the Milky Way disc and bulge region with samples of unprecedented size out to larger distances and greater precision than conceivable with Gaia alone or any other ongoing or planned survey. Gaia gives us the unique opportunity for target selection based almost entirely on parallax and magnitude range, hence increasing the efficiency in sampling larger Milky Way volumes with well-defined and effective selection functions. Our main goal is to provide a detailed chrono-chemo-kinematical extended map of our Galaxy and the largest Gaia follow-up down to G=19G = 19 magnitudes (Vega). The complex nature of the disc components (for example, large target densities and highly structured extinction distribution in the Milky Way bulge and disc area), prompted us to develop a survey strategy with five main sub-surveys that are tailored to answer the still open questions about the assembly and evolution of our Galaxy, while taking full advantage of the Gaia data.Comment: Part of the 4MOST issue of The Messenger, published in preparation of 4MOST Community Workshop, see http://www.eso.org/sci/meetings/2019/4MOST.htm

    The second data release of the INT Photometric Ha Survey of the Northern Galactic Plane (IPHAS DR2)

    Get PDF
    The INT/WFC Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800 deg2 imaging survey covering Galactic latitudes |b| < 5° and longitudes ℓ = 30°–215° in the r, i, and Hα filters using the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) in La Palma. We present the first quality-controlled and globally calibrated source catalogue derived from the survey, providing single-epoch photometry for 219 million unique sources across 92 per cent of the footprint. The observations were carried out between 2003 and 2012 at a median seeing of 1.1 arcsec (sampled at 0.33 arcsec pixel−1) and to a mean 5σ depth of 21.2 (r), 20.0 (i), and 20.3 (Hα) in the Vega magnitude system. We explain the data reduction and quality control procedures, describe and test the global re-calibration, and detail the construction of the new catalogue. We show that the new calibration is accurate to 0.03 mag (root mean square) and recommend a series of quality criteria to select accurate data from the catalogue. Finally, we demonstrate the ability of the catalogue's unique (r − Hα, r − i) diagram to (i) characterize stellar populations and extinction regimes towards different Galactic sightlines and (ii) select and quantify Hα emission-line objects. IPHAS is the first survey to offer comprehensive CCD photometry of point sources across the Galactic plane at visible wavelengths, providing the much-needed counterpart to recent infrared surveys

    The Gaia DR1 mass–radius relation for white dwarfs

    Get PDF
    The Gaia Data Release 1 (DR1) sample of white dwarf parallaxes is presented, including 6 directly observed degenerates and 46 white dwarfs in wide binaries. This data set is combined with spectroscopic atmospheric parameters to study the white dwarf mass-radius relationship (MRR). Gaia parallaxes and G magnitudes are used to derive model atmosphere dependent white dwarf radii, which can then be compared to the predictions of a theoretical MRR. We find a good agreement between Gaia DR1 parallaxes, published effective temperatures (Teff) and surface gravities (log g), and theoretical MRRs. As it was the case for Hipparcos, the precision of the data does not allow for the characterisation of hydrogen envelope masses. The uncertainties on the spectroscopic atmospheric parameters are found to dominate the error budget and current error estimates for well-known and bright white dwarfs may be slightly optimistic. With the much larger Gaia DR2 white dwarf sample it will be possible to explore the MRR over a much wider range of mass, Teff, and spectral types

    280 one-opposition near-Earth asteroids recovered by the EURONEAR with the <i>Isaac Newton</i> Telescope

    Get PDF
    Context. One-opposition near-Earth asteroids (NEAs) are growing in number, and they must be recovered to prevent loss and mismatch risk, and to improve their orbits, as they are likely to be too faint for detection in shallow surveys at future apparitions. Aims. We aimed to recover more than half of the one-opposition NEAs recommended for observations by the Minor Planet Center (MPC) using the Isaac Newton Telescope (INT) in soft-override mode and some fractions of available D-nights. During about 130 h in total between 2013 and 2016, we targeted 368 NEAs, among which 56 potentially hazardous asteroids (PHAs), observing 437 INT Wide Field Camera (WFC) fields and recovering 280 NEAs (76% of all targets). Methods. Engaging a core team of about ten students and amateurs, we used the THELI, Astrometrica, and the Find_Orb software to identify all moving objects using the blink and track-and-stack method for the faintest targets and plotting the positional uncertainty ellipse from NEODyS. Results. Most targets and recovered objects had apparent magnitudes centered around V ~ 22.8 mag, with some becoming as faint as V ~ 24 mag. One hundred and three objects (representing 28% of all targets) were recovered by EURONEAR alone by Aug. 2017. Orbital arcs were prolonged typically from a few weeks to a few years; our oldest recoveries reach 16 years. The O−C residuals for our 1854 NEA astrometric positions show that most measurements cluster closely around the origin. In addition to the recovered NEAs, 22 000 positions of about 3500 known minor planets and another 10 000 observations of about 1500 unknown objects (mostly main-belt objects) were promptly reported to the MPC by our team. Four new NEAs were discovered serendipitously in the analyzed fields and were promptly secured with the INT and other telescopes, while two more NEAs were lost due to extremely fast motion and lack of rapid follow-up time. They increase the counting to nine NEAs discovered by the EURONEAR in 2014 and 2015. Conclusions. Targeted projects to recover one-opposition NEAs are efficient in override access, especially using at least two-meter class and preferably larger field telescopes located in good sites, which appear even more efficient than the existing surveys
    corecore