565 research outputs found
Tiny percutaneous needle biopsy: An efficient methodfor studying cellular and molecular aspectsof skeletal muscle in humans
Needle biopsy is widely used to obtain specimens for physiological, anatomical and biochemical studies of skeletal muscle (SM). We optimized a procedure which we termed tiny percutaneous needle biopsy (TPNB), to efficiently gather good numbers of human satellite cells and single dissociated fibers for the functional study of skeletal muscle; these samples permit isolation of high-quality RNA and sufficient amounts of proteins to allow molecular analysis. Moreover, TPNB showed a clear advantage in that the technique was easier than other procedures used on healthy volunteers in human trials. TPNB is a very safe minor surgical procedure. It is less traumatic than needle aspiration biopsy, and significant complications are improbable. TPNB should become established as an important tool in the investigation of SM and may be employed to study various physiological aspects of SM in human subjects. We suggest that TPNB should also be used in the study of muscle diseases and disorders including muscular dystrophy, congenital myopathy, and metabolic defects
Zeb2 regulates myogenic differentiation in pluripotent stem cells
Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown. Here, we show that the transcription factor zinc finger E-box-binding homeobox 2 (Zeb2, Sip-1, Zfhx1b) is present in skeletal muscle tissues. We investigate the role of Zeb2 in skeletal muscle differentiation using genetic tools and transgenic mouse embryonic stem cells, together with single-cell RNA-sequencing and in vivo muscle engraftment capability. We show that Zeb2 over-expression has a positive impact on skeletal muscle differentiation in pluripotent stem cells and adult myogenic progenitors. We therefore propose that Zeb2 is a novel myogenic regulator and a possible target for improving skeletal muscle regeneration. The non-neural roles of Zeb2 are poorly understood
Photometry of comet 9P/Tempel 1 during the 2004/2005 approach and the Deep Impact module impact
The results of the 9P/Tempel 1 CARA (Cometary Archive for Amateur
Astronomers) observing campaign is presented. The main goal was to perform an
extended survey of the comet as a support to the Deep Impact (DI) Mission. CCD
R, I and narrowband aperture photometries were used to monitor the
quantity. The observed behaviour showed a peak of 310 cm 83 days before
perihelion, but we argue that it could be distorted by the phase effect, too.
The phase effect is roughly estimated around 0.0275 mag/degree, but we had no
chance for direct determination because of the very similar geometry of the
observed apparitions. The log-slope of was around -0.5 between about
180--100 days before the impact but evolved near the steady-state like 0 value
by the impact time. The DI module impact caused an about 60%{} increase in the
value of and a cloud feature in the coma profile which was observed
just after the event. The expansion of the ejecta cloud was consistent with a
fountain model with initial projected velocity of 0.2 km/s and =0.73.
Referring to a 25~000 km radius area centered on the nucleus, the total cross
section of the ejected dust was 8.2/ km 0.06 days after the impact, and
1.2/ km 1.93 days after the impact ( is the dust albedo). 5 days
after the event no signs of the impact were detected nor deviations from the
expected activity referring both to the average pre-impact behaviour and to the
previous apparitions ones.Comment: 25 pages (including cover pages), 9 figures, 1 table, accepted by
Icarus DI Special Issu
The rotation and coma profiles of comet C/2004 Q2 (Machholz)
Aims. Rotation periods of cometary nuclei are scarce, though important when
studying the nature and origin of these objects. Our aim is to derive a
rotation period for the nucleus of comet C/2004 Q2 (Machholz). Methods. C/2004
Q2 (Machholz) was monitored using the Merope CCD camera on the Mercator
telescope at La Palma, Spain, in January 2005, during its closest approach to
Earth, implying a high spatial resolution (50km per pixel). One hundred seventy
images were recorded in three different photometric broadband filters, two blue
ones (Geneva U and B) and one red (Cousins I). Magnitudes for the comet's
optocentre were derived with very small apertures to isolate the contribution
of the nucleus to the bright coma, including correction for the seeing. Our CCD
photometry also permitted us to study the coma profile of the inner coma in the
different bands. Results. A rotation period for the nucleus of P = 9.1 +/- 0.2
h was derived. The period is on the short side compared to published periods of
other comets, but still shorter periods are known. Nevertheless, comparing our
results with images obtained in the narrowband CN filter, the possibility that
our method sampled P/2 instead of P cannot be excluded. Coma profiles are also
presented, and a terminal ejection velocity of the grains v_gr = 1609 +/- 48
m/s is found from the continuum profile in the I band.Comment: 11 pages, 9 figures, accepted by A&
Neutral sodium from comet Hale-Bopp: a third type of tail
We report on the discovery and analysis of a striking neutral sodium gas tail associated with comet C/1995 O1 Hale-Bopp. Sodium D-line emission has been observed at heliocentric distance r<1.4 AU in some long-period comets and the presence of neutral sodium in the tailward direction of a few bright comets has been noted, but the extent, and in particular the source, has never been clear. Here we describe the first observations and analysis of a neutral sodium gas tail in comet Hale-Bopp, entirely different from the previously known ion and dust tails. We show that the observed characteristics of this third type of tail are consistent with itbeing produced by radiation pressure due to resonance fluorescence of sodium atoms and that the lifetime for photoionization is consistent with recent theoretical calculation
Zeb2 regulates myogenic differentiation in pluripotent stem cells
Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown. Here, we show that the transcription factor zinc finger E-box-binding homeobox 2 (Zeb2, Sip-1, Zfhx1b) is present in skeletal muscle tissues. We investigate the role of Zeb2 in skeletal muscle differentiation using genetic tools and transgenic mouse embryonic stem cells, together with single-cell RNA-sequencing and in vivo muscle engraftment capability. We show that Zeb2 over-expression has a positive impact on skeletal muscle differentiation in pluripotent stem cells and adult myogenic progenitors. We therefore propose that Zeb2 is a novel myogenic regulator and a possible target for improving skeletal muscle regeneration. The non-neural roles of Zeb2 are poorly understood
Modelling polarization properties of comet 1P/Halley using a mixture of compact and aggregate particles
Recently, the result obtained from `Stardust' mission suggests that the
overall ratio of compact to aggregate particles is 65:35 (or 13:7) for Comet
81P/Wild 2 (Burchell et al. 2008). In the present work, we propose a model
which considers cometary dust as a mixture of compact and aggregate particles,
with composition of silicate and organic. We consider compact particles as
spheroidal particles and aggregates as BCCA and BAM2 aggregate with some size
distribution. For modeling Comet 1P/ Halley, the power-law size distribution
n(a)= a^{-2.6}, for both compact and aggregate particles is taken. We take a
mixture of BAM2 and BCCA aggregates with a lower and upper cutoff size around
0.20 and 1. We also take a mixture of prolate, spherical and
oblate compact particles with axial ratio (E) from 0.8 to 1.2 where a lower and
upper cutoff size around 0.1 and 10 are taken. Using T-matrix
code, the average simulated polarization curves are generated which can best
fit the observed polarization data at the four wavelengths =
0.365, 0.485, 0.670 and 0.684. The suitable mixing
percentage of aggregates emerging out from the present modeling corresponds to
50% BAM2 and 50% BCCA particles and silicate to organic mixing percentage
corresponds to 78% silicate and 22% organic in terms of volume. The present
model successfully reproduces the observed polarization data, especially the
negative branch, more effectively as compared to other work done in the past.
It is found that among the aggregates, the BAM2 aggregate plays a major role,
in deciding the cross-over angle and depth of negative polarization branch.Comment: 7 pages, 5 figures (accepted for publication in MNRAS on May 4, 2011
Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia
We present a comparison of our results from ground-based observations of
asteroid (21) Lutetia with imaging data acquired during the flyby of the
asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity
to evaluate and calibrate our method of determination of size, 3-D shape, and
spin of an asteroid from ground-based observations. We present our 3-D
shape-modeling technique KOALA which is based on multi-dataset inversion. We
compare the results we obtained with KOALA, prior to the flyby, on asteroid
(21) Lutetia with the high-spatial resolution images of the asteroid taken with
the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter
with Lutetia. The spin axis determined with KOALA was found to be accurate to
within two degrees, while the KOALA diameter determinations were within 2% of
the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed
by the spectacular visual agreement between both 3-D shape models (KOALA pre-
and OSIRIS post-flyby). We found a typical deviation of only 2 km at local
scales between the profiles from KOALA predictions and OSIRIS images, resulting
in a volume uncertainty provided by KOALA better than 10%. Radiometric
techniques for the interpretation of thermal infrared data also benefit greatly
from the KOALA shape model: the absolute size and geometric albedo can be
derived with high accuracy, and thermal properties, for example the thermal
inertia, can be determined unambiguously. We consider this to be a validation
of the KOALA method. Because space exploration will remain limited to only a
few objects, KOALA stands as a powerful technique to study a much larger set of
small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S
The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
- …