1,104 research outputs found

    Composition profiling InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunnelling microscopy

    Get PDF
    This study compares cross-sectional scanning tunnelling microscopy (XSTM) and atom probe tomography (APT). We use epitaxially grown self-assembled InAs quantum dots (QDs) in GaAs as an exemplary material with which to compare these two nanostructural analysis techniques. We studied the composition of the wetting layer and the QDs, and performed quantitative comparisons of the indium concentration profiles measured by each method. We show that computational models of the wetting layer and the QDs, based on experimental data, are consistent with both analytical approaches. This establishes a link between the two techniques and shows their complimentary behaviour, an advantage which we exploit in order to highlight unique features of the examined QD material.Comment: Main article: 8 pages, 6 figures. Appendix: 3 pages, 5 figure

    Complete Wetting of Pits and Grooves

    Full text link
    For one-component volatile fluids governed by dispersion forces an effective interface Hamiltonian, derived from a microscopic density functional theory, is used to study complete wetting of geometrically structured substrates. Also the long range of substrate potentials is explicitly taken into account. Four types of geometrical patterns are considered: (i) one-dimensional periodic arrays of rectangular or parabolic grooves and (ii) two-dimensional lattices of cylindrical or parabolic pits. We present numerical evidence that at the centers of the cavity regions the thicknesses of the adsorbed films obey precisely the same geometrical covariance relation, which has been recently reported for complete cone and wedge filling. However, this covariance does not hold for the laterally averaged wetting film thicknesses. For sufficiently deep cavities with vertical walls and close to liquid-gas phase coexistence in the bulk, the film thicknesses exhibit an effective planar scaling regime, which as function of undersaturation is characterized by a power law with the common critical exponent -1/3 as for a flat substrate, but with the amplitude depending on the geometrical features.Comment: 12 page

    Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis

    Get PDF
    Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (ap/ap) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores

    Separately contacted electron-hole double layer in a GaAs/AlxGa1−xAs heterostructure

    Get PDF
    We describe a method for creating closely spaced parallel two-dimensional electron and hole gases confined in 200 Å GaAs wells separated by a 200 Å wide AlxGa1−xAs barrier. Low-temperature ohmic contacts are made to both the electrons and holes, whose densities are individually adjustable between 10^(10)/cm^2 to greater than 10^(11)/cm^2

    Breakdown of the Two-Step Model in K-Shell Photoemission and Subsequent Decay Probed by the Molecular-Frame Photoelectron Angular Distributions of CO_2

    Get PDF
    We report results of measurements and of Hartree-Fock level calculations of molecular-frame photoelectron angular distributions (MFPADs) for C 1s photoemission from CO2. The agreement between the measured and calculated MFPADs is on average reasonable. The measured MFPADs display a weak but definite asymmetry with respect to the O+ and CO+ fragment ions at certain energies, providing evidence for an overlap of gerade and ungerade final ionic states giving rise to a partial breakdown of the two-step model of core-level photoionization and its subsequent Auger decay

    Get PDF

    Yasegaman no setsu : On Fighting to the Bitter End

    Get PDF

    Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    Full text link
    Low-energy photoelectron–vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s−1 → 2p−1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO+ ions into O+ + N* or N+ + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission

    A novel, lineage-primed prestalk cell subtype involved in the morphogenesis of D-discoideum

    Get PDF
    Dictyostelium morphogenesis requires the tip, which acts as an organizer and conducts orchestrated cell movement and cell differentiation. At the slug stage the tip region contains prestalk A (pstA) cells, which are usually recognized by their expression of reporter constructs that utilize a fragment of the promoter of the ecmA gene. Here, using the promoter region of the o-methyl transferase 12 gene (omt12) to drive reporter expression, we demonstrate the presence, also within the pstA region, of a novel prestalk cell subtype: the pstVA cells. Surprisingly, a sub-population of the vegetative cells express a pstVA: GFP marker and, sort out to the tip, both when developing alone and when co-developed with an excess of unmarked cells. The development of such a purified GFP-marked population is greatly accelerated: by precocious cell aggregation and tip formation with accompanying precocious elevation of developmental gene transcription. We therefore suggest that the tip contains at least two prestalk cell subtypes: the developmentally-specified pstA cells and the lineage-primed pstVA cells. It is presumably the pstVA cells that play the dominant role in morphogenesis during the earlier stages of development. The basis for the lineage priming is, however, unclear because we can find no correlation between pstVA differentiation and nutrient status during growth or cell cycle position at the time of starvation, the two known determinants of probable cell fate
    corecore