175 research outputs found

    THE NATURAL HISTORY OF MODEL ORGANISMS C. elegans outside the Petri dish

    Get PDF
    International audienceThe roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology

    Mutations des gènes et maladies génétiques

    Get PDF

    L’éducation à l’environnement et/ou au développement durable : un enjeu de la vie politique locale

    Get PDF
    L’éducation à l’environnement et/ou au développement durable mobilise une pluralité d’acteurs, parmi lesquels figurent des associations, des institutions scolaires, des entreprises et des collectivités territoriales. Ces dernières jouent un rôle de plus en plus important ; elles sont de plus en plus nombreuses à développer des actions et des projets d’éducation à l’environnement et/ou au développement durable. L’intensité globale de leur engagement est également croissante. Toutes les collectivités n’adoptent cependant pas les mêmes orientations. Certaines s’orientent vers l’éducation à l’environnement, d’autres vers l’éducation au développement durable.Environmental education and education for sustainable development mobilize a variety of actors, including associations, academic institutions, businesses and territorial collectivities. In France, more and more of these local communities develop environmental education and/or education for sustainable development actions and projects. Moreover, the global intensity of their commitment is increasing. All collectivities do not yet adopt the same orientations. Some go toward environmental education, others toward education to sustainable development

    Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements

    Get PDF
    In animals, small RNA molecules termed PIWI-interacting RNAs (piRNAs) silence transposable elements (TEs), protecting the germline from genomic instability and mutation. piRNAs have been detected in the soma in a few animals, but these are believed to be specific adaptations of individual species. Here, we report that somatic piRNAs were likely present in the ancestral arthropod more than 500 million years ago. Analysis of 20 species across the arthropod phylum suggests that somatic piRNAs targeting TEs and mRNAs are common among arthropods. The presence of an RNA-dependent RNA polymerase in chelicerates (horseshoe crabs, spiders, scorpions) suggests that arthropods originally used a plant-like RNA interference mechanism to silence TEs. Our results call into question the view that the ancestral role of the piRNA pathway was to protect the germline and demonstrate that small RNA silencing pathways have been repurposed for both somatic and germline functions throughout arthropod evolution.We thank A. McGregor, D. Leite, M. Akam, R. Jenner, R. Kilner, A. Duarte, C. Jiggins, R. Wallbank, A. Bourke, T. Dalmay, N. Moran, K. Warchol, R. Callahan, G. Farley and T. Livdahl for providing the arthropods. H. Robertson provided the D. virgifera genome sequence. This research was supported by a Leverhulme Research Project Grant (RPG-2016-210 to F.M.J., E.A.M. and P.S.), a European Research Council grant (281668 DrosophilaInfection to F.M.J.), a Medical Research Council grant (MRC MC-A652-5PZ80 to P.S.), an Imperial College Research Fellowship (to P.S.), Cancer Research UK (C13474/A18583 and C6946/A14492 to E.A.M.), the Wellcome Trust (104640/Z/14/Z and 092096/Z/10/Z to E.A.M.) and a National Institutes of Health R37 grant (GM62862 to P.D.Z.)

    The Barcode of Life Data Portal: Bridging the Biodiversity Informatics Divide for DNA Barcoding

    Get PDF
    With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence–based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form—often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP) is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG) of the Consortium for the Barcode of Life (CBOL), the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum

    Distribution of immunodeficiency fact files with XML – from Web to WAP

    Get PDF
    BACKGROUND: Although biomedical information is growing rapidly, it is difficult to find and retrieve validated data especially for rare hereditary diseases. There is an increased need for services capable of integrating and validating information as well as proving it in a logically organized structure. A XML-based language enables creation of open source databases for storage, maintenance and delivery for different platforms. METHODS: Here we present a new data model called fact file and an XML-based specification Inherited Disease Markup Language (IDML), that were developed to facilitate disease information integration, storage and exchange. The data model was applied to primary immunodeficiencies, but it can be used for any hereditary disease. Fact files integrate biomedical, genetic and clinical information related to hereditary diseases. RESULTS: IDML and fact files were used to build a comprehensive Web and WAP accessible knowledge base ImmunoDeficiency Resource (IDR) available at . A fact file is a user oriented user interface, which serves as a starting point to explore information on hereditary diseases. CONCLUSION: The IDML enables the seamless integration and presentation of genetic and disease information resources in the Internet. IDML can be used to build information services for all kinds of inherited diseases. The open source specification and related programs are available at

    Assessment of Three Mitochondrial Genes (16S, Cytb, CO1) for Identifying Species in the Praomyini Tribe (Rodentia: Muridae)

    Get PDF
    The Praomyini tribe is one of the most diverse and abundant groups of Old World rodents. Several species are known to be involved in crop damage and in the epidemiology of several human and cattle diseases. Due to the existence of sibling species their identification is often problematic. Thus an easy, fast and accurate species identification tool is needed for non-systematicians to correctly identify Praomyini species. In this study we compare the usefulness of three genes (16S, Cytb, CO1) for identifying species of this tribe. A total of 426 specimens representing 40 species (sampled across their geographical range) were sequenced for the three genes. Nearly all of the species included in our study are monophyletic in the neighbour joining trees. The degree of intra-specific variability tends to be lower than the divergence between species, but no barcoding gap is detected. The success rate of the statistical methods of species identification is excellent (up to 99% or 100% for statistical supervised classification methods as the k-Nearest Neighbour or Random Forest). The 16S gene is 2.5 less variable than the Cytb and CO1 genes. As a result its discriminatory power is smaller. To sum up, our results suggest that using DNA markers for identifying species in the Praomyini tribe is a largely valid approach, and that the CO1 and Cytb genes are better DNA markers than the 16S gene. Our results confirm the usefulness of statistical methods such as the Random Forest and the 1-NN methods to assign a sequence to a species, even when the number of species is relatively large. Based on our NJ trees and the distribution of all intraspecific and interspecific pairwise nucleotide distances, we highlight the presence of several potentially new species within the Praomyini tribe that should be subject to corroboration assessments

    International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database - the quality controlled standard tool for routine identification of human and animal pathogenic fungi

    Get PDF
    Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.This study was supported by an National Health and Medical Research Council of Australia (NH&MRC) grant [#APP1031952] to W Meyer, S Chen, V Robert, and D Ellis; CNPq [350338/2000-0] and FAPERJ [E-26/103.157/2011] grants to RM Zancope-Oliveira; CNPq [308011/2010-4] and FAPESP [2007/08575-1] Fundacao de Amparo Pesquisa do Estado de So Paulo (FAPESP) grants to AL Colombo; PEst-OE/BIA/UI4050/2014 from Fundacao para a Ciencia e Tecnologia (FCT) to C Pais; the Belgian Science Policy Office (Belspo) to BCCM/IHEM; the MEXBOL program of CONACyT-Mexico, [ref. number: 1228961 to ML Taylor and [122481] to C Toriello; the Institut Pasteur and Institut de Veil le Sanitaire to F Dromer and D Garcia-Hermoso; and the grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and the Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG) to CM de Almeida Soares and JA Parente Rocha. I Arthur would like to thank G Cherian, A Higgins and the staff of the Molecular Diagnostics Laboratory, Division of Microbiology and Infectious Diseases, Path West, QEII Medial Centre. Dromer would like to thank for the technical help of the sequencing facility and specifically that of I, Diancourt, A-S Delannoy-Vieillard, J-M Thiberge (Genotyping of Pathogens and Public Health, Institut Pasteur). RM Zancope-Oliveira would like to thank the Genomic/DNA Sequencing Platform at Fundacao Oswaldo Cruz-PDTIS/FIOCRUZ [RPT01A], Brazil for the sequencing. B Robbertse and CL Schoch acknowledge support from the Intramural Research Program of the NIH, National Library of Medicine. T Sorrell's work is funded by the NH&MRC of Australia; she is a Sydney Medical School Foundation Fellow.info:eu-repo/semantics/publishedVersio

    Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues

    Get PDF
    Background. Ruminants are successful herbivorous mammals, in part due to their specialized forestomachs, the rumen complex, which facilitates the conversion of feed to soluble nutrients by micro-organisms. Is the rumen complex a modified stomach expressing new epithelial (cornification) and metabolic programs, or a specialised stratified epithelium that has acquired new metabolic activities, potentially similar to those of the colon? How has the presence of the rumen affected other sections of the gastrointestinal tract (GIT) of ruminants compared to non-ruminants? Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified epithelial and two control tissues, was analysed using principal components to cluster tissues based on gene expression profile similarity. Expression profiles of genes along the sheep GIT were used to generate a network to identify genes enriched for expression in different compartments of the GIT. The data from sheep was compared to similar data sets from two non-ruminants, pigs (closely related) and humans (more distantly related). Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT transcriptomes, driven by genes from the epidermal differentiation complex, and genes encoding stratified epithelium keratins and innate immunity proteins. By analysing all of the gene expression profiles across tissues together 16 major clusters were identified. The strongest of these, and consistent with the high turnover rate of the GIT, showed a marked enrichment of cell cycle process genes (P = 1.4 E−46), across the whole GIT, relative to liver and muscle, with highest expression in the caecum followed by colon and rumen. The expression patterns of several membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short chain fatty acid uptake and metabolism appeared to be different between the species and different between the rumen and colon in sheep. The importance of nitrogen and iodine recycling in sheep was highlighted by the highly preferential expression of SLC14A1-urea (rumen), RHBG-ammonia (intestines) and SLC5A5-iodine (abomasum). The gene encoding a poorly characterized member of the maltase-glucoamylase family (MGAM2), predicted to play a role in the degradation of starch or glycogen, was highly expressed in the small and large intestines. Discussion. The rumen appears to be a specialised stratified cornified epithelium, probably derived from the oesophagus, which has gained some liver-like and other specialized metabolic functions, but probably not by expression of pre-existing colon metabolic programs. Changes in gene transcription downstream of the rumen also appear have occurred as a consequence of the evolution of the rumen and its effect on nutrient composition flowing down the GIT
    corecore