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ABSTRACT
Background. Ruminants are successful herbivorous mammals, in part due to their
specialized forestomachs, the rumen complex, which facilitates the conversion of feed
to soluble nutrients by micro-organisms. Is the rumen complex a modified stomach
expressing new epithelial (cornification) and metabolic programs, or a specialised
stratified epithelium that has acquired new metabolic activities, potentially similar to
those of the colon? How has the presence of the rumen affected other sections of the
gastrointestinal tract (GIT) of ruminants compared to non-ruminants?
Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified
epithelial and two control tissues, was analysed using principal components to cluster
tissues based on gene expression profile similarity. Expression profiles of genes along
the sheep GIT were used to generate a network to identify genes enriched for expression
in different compartments of the GIT. The data from sheep was compared to similar
data sets from two non-ruminants, pigs (closely related) and humans (more distantly
related).
Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT
transcriptomes, driven by genes from the epidermal differentiation complex, and genes
encoding stratified epithelium keratins and innate immunity proteins. By analysing all
of the gene expression profiles across tissues together 16 major clusters were identified.
The strongest of these, and consistent with the high turnover rate of the GIT, showed
a marked enrichment of cell cycle process genes (P = 1.4E−46), across the whole GIT,
relative to liver and muscle, with highest expression in the caecum followed by colon
and rumen. The expression patterns of several membrane transporters (chloride, zinc,
nucleosides, amino acids, fatty acids, cholesterol and bile acids) along the GIT was
very similar in sheep, pig and humans. In contrast, short chain fatty acid uptake and
metabolism appeared to be different between the species and different between the
rumen and colon in sheep. The importance of nitrogen and iodine recycling in sheep
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was highlighted by the highly preferential expression of SLC14A1-urea (rumen), RHBG-
ammonia (intestines) and SLC5A5-iodine (abomasum). The gene encoding a poorly
characterizedmember of themaltase-glucoamylase family (MGAM2), predicted to play
a role in the degradation of starch or glycogen, was highly expressed in the small and
large intestines.
Discussion. The rumen appears to be a specialised stratified cornified epithelium,
probably derived from the oesophagus, which has gained some liver-like and other
specialized metabolic functions, but probably not by expression of pre-existing colon
metabolic programs. Changes in gene transcription downstream of the rumen also
appear have occurred as a consequence of the evolution of the rumen and its effect on
nutrient composition flowing down the GIT.

Subjects Agricultural Science, Bioinformatics, Evolutionary Studies, Genomics, Veterinary
Medicine
Keywords Gastrointestinal tract, Rumen, RNA sequencing, Sheep, Evolution, Metabolim,
Ketone bodies, Cell cycle, Transcriptome network, Short chain fatty acids

INTRODUCTION
The ruminants, of which sheep, cattle, buffalo and goats are themajor domesticated species,
are now the most numerous large herbivores on earth. Their success is partly due to their
specialized forestomachs, the rumen complex (the rumen, reticulum and omasum), and
to rumination, the process of recycling the partially digested material via the mouth to
reduce particle size and increase rate of fermentation (Hofmann, 1989). The forestomachs
follow the oesophagus and precede the abomasum (the equivalent of the stomach of
non-ruminants) (Hofmann, 1989). The evolutionary origin of the rumen is the subject of
debate with out-pouching of the oesophagus, or of the stomach, as the most likely origins
(Beck, Jiang & Zhang, 2009; Langer, 1988). The primary chambers of the rumen facilitate
the action of a complex mixture of micro-organisms to ferment a portion of the plant
polysaccharides (including starch, xylan and cellulose) and lipids to short chain volatile
fatty acids (SCFAs), principally acetate, butyrate and propionate (Bergman, 1990). The
SCFAs are the primary energy source in carbon of ruminants, and the rumen is the major
site of their uptake.

From the rumen, partially processed plantmaterial, nutrients, andmicro-organisms pass
through the omasum and enter the conventional gastrointestinal system: the abomasum,
and the small and large intestines for further digestion and fermentation (in the large
intestine). The abomasum is primarily a digestive organ lowering the pH of the rumen
fluid and facilitating the first step of proteolysis prior to more extensive degradation in the
duodenum and absorption of amino acids and small peptides. Pancreatic RNAses degrade
microbial RNA in the small intestine contributing to nitrogen availability. On pasture,
roughage or grass diets only small amounts of starch escape fermentation in the rumen
and the remaining starch is generally digested in the small intestine, providing limited
amounts of glucose (Deckardt, Khol-Parisini & Zebeli, 2013). Depending on the dietary
source larger amounts of starch may escape fermentation in the rumen (Huntington,
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1997). As a consequence glucose is not a major source of carbon in ruminants, and the
liver is not a major site of (fatty acids) FA synthesis (Ingle, Bauman & Garrigus, 1972).
Biohydrogenation processes in the rumen (Van Nevel & Demeyer, 1996) increase the
saturation of fatty acids (Jenkins et al., 2008; Van Nevel & Demeyer, 1996), and lipids that
escape fermentation in the rumen are taken up in the small intestine. Fermentation of the
remaining carbohydrates, lipid etc. occurs in the large intestine/hindgut. The hindgut is
responsible for 5–10% of the total digestion of carbohydrates (Gressley, Hall & Armentano,
2011) and for 8–17% of total production of SCFAs (Hoover, 1978). This contribution of
hindgut fermentation may be altered on high grain diets (Fox et al., 2007; Mbanzamihigo,
Van Nevel & Demeyer, 1996). The overlap in functions of the rumen and the hindgut raises
the question of whether the equivalent processes in the two tissues are undertaken by the
same proteins and pathways; that is co-option of the hindgut program by the rumen, or
by different proteins and pathways resulting from convergent evolution.

Unlike the stomach and subsequent segments of the GIT the rumen surface is a stratified
squamous epithelium that is cornified and keratinized to protect the rumen from physical
damage from the ingested plant material (Scocco et al., 2013). Due to the large numbers of
microorganisms in the rumen it is also exposed to colonization of surfaces and potential
attack from these organisms. The nature of the defences and the interaction between the
surface of the rumen and the microbial populations has not been investigated in detail.

Herein, we utilised the latest sheep genome and transcriptome data (Jiang et al., 2014) to
further dissect gene expression features of the ruminantGIT.We analyze the transcriptomes
of six GIT tissue/cell types covering the majority of the sheep GIT in the context of
reference samples from two other tissues with stratified squamous epithelium (skin and
tonsil), another component of the immune system (spleen), and two non-epithelial
tissues (liver and muscle). Further, we systematically compared our results with existing
transcriptome data from the human and pig gastrointestinal tracts and with relevant
literature using candidate gene/protein based approaches. Our major aims were to identify:
(i) the distinctive features of ruminant GIT, (ii) the common features shared between
ruminant and mammalian GIT and (iii) the developmental origin of the rumen.

METHODS
Data acquisition and statistical analysis
No new primary datasets were generated in this work, the major secondary datasets
are included in the supplementary material. The sample preparation procedures and
sequencing of the RNA are described in Jiang et al. (2014) and experimental animal
information is specified in Table S1. Briefly, tissue samples were obtained from a trio of
Texel sheep, i.e., ram (r), ewe (e) and their lamb (l). RNA was prepared and sequenced
using stranded Illumina RNA-Seq with a yield of 70–150 million reads per tissue sample. 26
files of RNA sequence alignment data in the BAM format for 11 tissue/cell types, including
skin (n= 3), tonsil (n= 1r), ventral rumen (n= 3), abomasum (n= 3), duodenum
(n= 1r), caecum (n= 2, r and l), colon (n= 3), rectum (n= 3), spleen (n= 2,r and
l), liver (n= 2,r and e) and muscle (n= 3), were downloaded from the Ensembl sheep
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RNA sequencing archive, Oar_v3.1 (Huttenhower et al., 2009; Jiang et al., 2014). Detailed
animal and gender distribution can be found in Fig. S1. Detailed raw RNA sequencing data
from the same samples was also retrieved from the European Nucleotide Archive (ENA),
study accession PRJEB6169. The raw mapping counts for each gene were calculated from
the downloaded BAM files and the Ensembl sheep gene models (Sheep Genome v3.1,
http://www.ensembl.org/Ovis_aries/Info/Index), with additional gene models for genes at
the epidermal differentiation complex (EDC) locus not included in the Ensembl sheep gene
models (Jiang et al., 2014), using HTSeq in the Python environment (Anders, Pyl & Huber,
2015). The raw count data was normalized and clustered with DEseq2 (Love, Huber &
Anders, 2014) to produce PCA plots and variance-stabilizing transformed gene expression
values for network analysis described below. DEseq2 produced PCA sample clustering
was further tested for significance using a k-means method and bivariate t -distributions
based on the eigenvalues of the principle components. Calculation was performed using
the stat_ellipse package (2012) and the raw outputs were presented in ggplot2 in R. EdgeR
(Robinson, McCarthy & Smyth, 2010) in Bioconductor in R v3.1.3 was used to analyse
gene differential expression. After filtering for transcripts with at least 1 count per million
in at least one of the 11 tissues, data was analysed using the Analysis of Variance-like
procedure (special feature in EdgeR) and fitted to a simple model: y = tissuei+animalj+eij
where y is raw transcript counts, tissuei (i= 11) is 11 types of tissues and animalj (j = 3)
is the adjustment of types of animal (lamb, ram and ewe). Transcripts with significance
levels (P)< 0.01 and false discovery rate (FDR) < 0.01 for tissue effects and differentially
expressed in at least one of the 11 tissues were identified.

Co-expression network analysis
Variance-stabilizing transformed RNA sequencing expression values have properties
similar to normalizedmicroarray expression values in terms of network analysis (Giorgi, Del
Fabbro & Licausi, 2013) and raw counts of differentially expressed (FDR < 0.01) transcripts
were variance-stabilizing transformed (Durbin et al., 2002) using DEseq2. Transformed
expression values were analyzed for co-expression using PCIT (Hudson, Dalrymple
& Reverter, 2012; Reverter & Chan, 2008) in R v3.1.3 (Watson-Haigh, Kadarmideen &
Reverter, 2010). To reduce the complexity of the network the PCIT output was filtered
for pairs of genes with a correlation coefficient >0.9 and visualized in Cytoscape v3.1.2
(Shannon et al., 2003). The network cluster algorithm ‘community cluster’ within the
GLay plugin (Su et al., 2010) of Cytoscape was used to subdivide the large network and
identify explanatory sub-networks in an iterative manner until no obvious sub-network
was observed in the large network. Pig genes assigned to 10 clusters showing differential
expression in the pig GIT (Freeman et al., 2012) were mapped to sheep genes based on
their gene symbols. The probability of over or under representation of pig GIT genes in
a sheep GIT gene cluster was calculated using the hypergeometric distribution (Andrews,
Askey & Roy, 1999). Functional enrichment of shared sets of genes within sheep clusters
was analyzed using GOrilla (Eden et al., 2009) to identify biological pathways.
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Gene expression pattern clustering
The transcripts present in the gene networks described above, andwith anANOVA P < 0.01
and a FDR < 0.01, were included in k-mean clustering in R v3.1.3 based on log2 fold change
across 11 tissues with abomasum being the reference. The k-mean analysis aimed to identify
expression patterns to represent transcript groups showing elevated expression levels for
the following sets of tissues v. the remaining tissues: (1) all GIT tissues, i.e., rumen,
abomasum, duodenum, caecum, colon and rectum, (2) rumen and abomasum, (3) rumen
and intestinal tissues, (4) abomasum and intestinal tissues, (5) rumen, (6) abomasum, (7)
intestinal tissues, (8) rumen and skin, (9) rumen and tonsil, (10) rumen, skin and tonsil,
(11) spleen, duodenum, caecum, and colon. The transcript names are determined based
on the tissue(s) where included transcripts showed the highest expression. We filtered the
identified transcript clusters with the criteria that (1) the average absolute expression of
the transcript at the highest expressed tissue > 3 counts per million, (2) the log2 expression
fold difference of expression of the transcript from the tissue within the reference tissue
group with the highest expression to the tissue within the elevated expressed tissue group
with the highest expression, be >0.5, and (3) from the tissue with the highest expression
to the tissue with the lowest expression within the elevated tissue group be <0.5. The final
expression of each transcript is presented in the format of log2 Fragments Per Kilobase
of exon per Million fragments mapped (FPKM). Selected gene members and associated
pathways were presented in heat maps based on their log2 FKPM values using GENE-E.

To understand the GIT associated SLC family genes, we performed a network analysis
of expression as above. The PCIT output of network matrix was filtered for correlation
coefficient > 0.7, clustered by GLay (Su et al., 2010) and visualized in Cytoscape v3.1.2
(Shannon et al., 2003).

Comprehensive transcript annotation
To complement the sheep genome annotation, we used multiple annotation sources and
software to identify the function of the products encoded by the identified transcripts.
Firstly, the transcripts of interest, both with and without a gene symbol, were validated
for existence in the sheep genome, using comparisons of the sheep gene within the locus
with its ortholog(s) in human and cattle from Ensembl and NCBI. Secondly, GO was
used to annotate genes. Thirdly, the functions and annotations of the genes were searched
in Ensembl and NCBI, if no available description or gene information were identified,
the biomedical literature was searched with GenCLiP 2.0 (Wang et al., 2014). When
multiple biomedical functions were listed, functions related to gastrointestinal activity
were prioritized for annotation. Fourthly, for a subset of genes Unigene (McGrath, Bolling
& Jonkman, 2010), Genevestigator (Hruz et al., 2008) and GeneAtlas (Frezal, 1998) were
used to identify transcript expression patterns in cattle and humans respectively. Protein
sequences analysis was performed using Radar (Heger & Holm, 2000), to identify amino
acid sequence repeats, and NetOGlyc 4.0 (Steentoft et al., 2013), to identify glycosylation
sites.
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Figure 1 Transcriptomic sample clustering. Each dot represents one tissue sample from a single animal.
Circles indicate significant clusters (confidence interval= 95%). Raw PCA plots are available (Figure S1).

Data access
No new primary datasets were generated in this work, the major secondary datasets are
included in the Supplemental Information.

RESULTS AND DISCUSSION
Clustering of sheep GIT tissue transcriptomes
We performed principal component analysis (PCA) using RNA-Seq data from six GIT
(rumen, abomasum, duodenum, caecum, colon and rectum), two epithelial (skin and
tonsil), an immune (spleen) and two reference (liver and muscle) tissue/cell types from a
trio of Texel sheep (ram, ewe and lamb (Jiang et al., 2014)). We included a total of 26 tissue
samples, a similar tissue sample coverage to a previous transcriptomic study of the pig GIT
(Freeman et al., 2012) to which the results of this analysis will be compared below. Three
clusters of tissues were identified at the 95% confidence interval: cluster 1, skin, tonsil and
rumen, cluster 2, muscle, and cluster 3, liver, spleen and the remaining GIT tissues (Fig.
1A, Fig. S1A).
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Table 1 Gene Ontology enrichments of clusters.

Cluster GO-term FDR corrected P-valuea

Rumen EDC locusb 7.1E-13c

Epithelia-rumen-tonsil EDC locusb 8.6E-15c

Defense response to fungus 8.6E-03
Epithelia-rumen bias Keratinization 2.4E-04
Epithelia-all – –
Epithelia-large intestine Desmosome organization 4.7E-03
Epithelia-GI-liver Cell junction organization 6.3E-03
Abomasum-intestine – –
Intestine-low in rectum – –
Large intestine Regulation of chloride transport 4.5E-05
Intestine – –
Epithelia-intestine Cell cycle process 1.4E-46
Abomasum Digestion 3.8E-02
Small intestine – –
Rumen-abomasum Platelet aggregation 2.2E–04
Rumen-intestine-liver Flavonoid biosynthetic process 5.5E–10
Intestine-spleen Humoral immune response 4.5E–02

Notes.
aTop significantly enriched pathway selected from GOrilla analysis (see ‘Methods’) for each input gene cluster.
bGenes in the EDC locus of the sheep genome.
cEnrichment of EDC locus genes was calculated using the hypergeometric distribution.

Identification of common and specific GIT and epithelial
transcriptomic signatures
To identify the genes driving the clustering of the tissues we identified those transcripts with
an ANOVA P < 0.01 and a false discovery rate (FDR) < 0.01, for differential expression in
at least one tissue versus the other tissue types. This multi-tissue comparison reduced the
impact of the small sample size for some tissues, in particular the duodenum (one tissue
sample). Secondly, for a conservative gene network cluster analysis, the pair-wise gene
correlation coefficient cut-off was set to 0.9 and we further filtered transcripts based on
relative (fold change) and absolute (counts per million) expression levels. We identified
16 major gene expression patterns, representing common and specific transcriptomic
signatures of the epithelial and GI tissues, accounting for 639 different transcripts (Fig.
2A). A full list of the expression of the genes across the tissues with assignment to clusters
is available (Table S2, S3). Gene Ontology enrichment analysis of the clusters identified a
number of significantly enriched terms (Table 1). A full list of the genes contributing to the
enrichments is available (Table S4). Most notable was the highly significant enrichment of
the genes in the epithelia-intestine cluster for the GO-term, ‘‘cell cycle process’’. The higher
expression of the majority of these genes in the epithelial and GIT tissues (Fig. 2, Table
S2) is consistent with the much higher turnover rate of these tissues compared to liver and
muscle (Milo et al., 2010) and may contribute to the structural adaptability of the rumen
epithelia to different diets and health conditions (Dionissopoulos et al., 2012; Penner et al.,
2011). Epithelia structure related pathways including ‘cell junctions’ showed significant
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Figure 2 Gene co-expression network. (A) Each dot represents a sheep transcript and different colors
represent the tissue(s) where the transcript showed high expression, compared to the other tissues. Rec-
tum ↓: low in rectum. (B) The same gene co-expression network with only the orthologous genes present
in specific pig GIT clusters (Freeman et al., 2012) highlighted (Additional file 1). The names and colors of
pig cluster were determined according to the tissues where genes showed the highest and the second high-
est expression level in the pig GI gene network (Freeman et al., 2012).
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enrichment in genes highly expressed in the rumen and the large intestine (Table 1).
Gene members involved in cell junction functions have been reported to be important for
the rumen epithelia to maintain pH homeostasis (Dionissopoulos et al., 2012; Steele et al.,
2011a). Two other very significant enrichments were observed, ‘‘flavonoid biosynthetic
process’’ in the rumen-intestine-liver cluster and ‘‘regulation of chloride transport’’ in
the large intestine cluster (Table 1). The mammalian Epidermal Development Complex
(EDC) locus is a cluster of up to 70 adjacent genes encoding proteins with roles in the
development and the structure of stratified epithelia (Kypriotou, Huber & Hohl, 2012).
Although no significant enrichment of genes in the rumen cluster was identified by GO
analysis genes in the EDC region were very significantly overrepresented in the cluster
(Table 1). This is consistent with our previous identification of several ruminant specific
genes at the EDC locus highly preferentially expressed in the rumen (Jiang et al., 2014).
The genes in the epithelia-rumen-tonsil cluster were also very significantly enriched for
EDC genes (Table 1). Thus the clustering of the rumen with the skin and tonsil appears
to have been driven by genes involved in the development and structure of the stratified
epithelium.

The stratified squamous rumen epithelium expression signature
The EDC locus genes are not the only genes encoding proteins involved in the synthesis
of the cornified surface of the rumen and we looked for additional genes involved in
cornification preferentially expressed in the rumen compared to skin and tonsil. The cross
linking of the proteins of the cornified surface is mediated by transglutaminases (TGMs)
(Eckert et al., 2005). Multiple TGMs are expressed in the rumen in this study, TGM1 and
TGM3 appear to be the major rumen transglutaminases, but are also highly expressed in
the skin (Fig. 3). Keratins are major components of the cornified layers so we asked the
question, are there keratin genes highly preferentially expressed in the rumen? Although
no KRT genes showed expression as exclusive to the rumen as some of the EDC locus
genes in our data, KRT36 was grouped in the rumen expression cluster (Fig. 3, Table S3,
Fig. S2), with significantly elevated expression in rumen, compared to the other studied
tissues, and limited expression in skin. KRT36 was previously identified as a novel keratin
gene only expressed in sheep hair cortex (Yu et al., 2011) and its rumen expression showed
significant responses to dietary changes in cattle (Li et al., 2015). However, in humans
the highest expression of KRT36 was in the tongue (Genevestigator (Hruz et al., 2008)
analysis). Overall the transglutaminases and keratins do not appear to be as preferentially
expressed in the rumen as some of the EDC locus genes.

Kallikrein-related peptidases are involved in the turnover of the cornified layers of
the stratified epithelia, and deficiencies can lead to altered turnover of the surface
layers of the epithelia (Hovnanian, 2013). In our study, KLK12 is the only KLK family
member preferentially expressed in the rumen (Fig. 3, Table S2). Members of the SPINK
(serine peptidase inhibitor, Kazal type) family are inhibitors of the KLK family peptidases
(Hovnanian, 2013), SPINK5 is the only member of the family that is highly expressed in
the rumen (Fig. 3, Table S2) in our data, but is also highly expressed in the tonsil and skin.
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Figure 3 Expression profiles of innate immunity and epithelial development genes in sheep.Data are
presented with log2 Fragments Per Kilobase of exon per Million fragments mapped (FPKM) values along
with the subcellular locations and/or tissues of pig (Freeman et al., 2012) and human (Genevestigator
(Hruz et al., 2008) analysis) where these genes showed high expression. Cellular location information were
derived from GENATLAS database (Frezal, 1998).

KLK12 and SPINK5 may be involved in the regulation of the turnover and thickness of the
cornified surface of the rumen epithelium, but may not form a rumen specific system.

Rumen micro-organism interactions
The rumen is the site of frequent interaction between the host and very dense populations
ofmicro-organisms. In our study,DUOX2 andDUOXA2 encoding subunits of dual oxidase
were preferentially expressed in the rumen (Fig. 3), while DUOX1 showed rumen-biased
expression (Fig. 3) and DUOXA1 was highly expressed in all epithelia tissues (Fig. 3). This
observation is in line with the findings in the pig where the highest expression of DUOXA1
and DUOX1 was in the epithelial tissues, e.g., tongue and lower oesophagus (Freeman et
al., 2012). In humans, the DUOXA1 and DUOX1 genes are also most highly expressed in
epithelia tissues exposed to air, whilst DUOX2 and DUOXA2 are most highly expressed
in a different set of tissues including the GIT (Genevestigator (Hruz et al., 2008) analysis).
Thus, our findings suggest that the DUOX1s are active in general epithelial tissues, while
DUOX2s are probably active specifically in rumen to play a major role in controlling
microbial colonization. Previously in sheep, the highest expression levels of DUOX1 and
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DUOX2 were reported in the bladder and abomasum, respectively, but the rumen and
epithelial tissues were not included in the tissues surveyed (Lees et al., 2012).

PIP, encoding prolactin-induced protein (an aspartyl protease), was preferentially
expressed in the rumen (Fig. 3). In humans, PIP is also highly expressed in epidermal
(Genevestigator (Hruz et al., 2008) analysis) and exocrine tissues, and in pigs in the salivary
gland. Although PIP has been reported to be involved in regulation of the cell cycle in
human breast epithelial cells (Cassoni et al., 1995; Naderi & Vanneste, 2014), its expression
pattern in sheep (not part of the cell cycle cluster) is more consistent with a role in mucosal
immunity (Hassan et al., 2009). Also highly expressed in the rumen were members of the
SERPINB family of peptidase inhibitors (Fig. 3), which are involved in the protection of
epithelial surfaces in humans (Wang et al., 2012) and mice (Sivaprasad et al., 2011). EDC
locus genes PGLYRP3 and PGLYRP4 encode peptidoglycan recognition proteins in the
N-acetylmuramoyl-L-alanine amidase 2 family, which bind to the murein peptidoglycans
of Gram-positive bacteria as part of the innate immune system. Additional EDC locus
genes, S100A8, S100A9 and S100A12 (calgranulins A, B and C), encode key players in the
innate immune function (Funk et al., 2015; Tong et al., 2014).

Rumen steroid metabolism
Amongst the genes preferentially expressed in the rumen (and often the liver) we identified
a number of aldo/keto-reductases (Fig. 4). AKR1C1 can catalyze the conversion of
progesterone to 20-alpha-hydroxy-progesterone (PGF2α) (Penning, 1997), retinals to
retinols and bioactivates and detoxifies a range of molecules (El-Kabbani, Dhagat & Hara,
2011). Intravenous injection of PGF2α in goats has been shown to increase contraction
strength of rumen smooth muscle, which leads to a reduction in the contraction rate
of the rumen (Van Miert & Van Duin, 1991; Veenendaal et al., 1980). AKR1C1 has also
been reported to be preferentially expressed in the rumen of cattle (Kato et al., 2015).
The exact role of AKR1C1 in the rumen is unknown. In addition, the gene encoding
the related enzyme AKR1D1 (catalyzes the reduction of progesterone, androstenedione,
17-alpha-hydroxyprogesterone and testosterone to 5-beta-reduced metabolites) is highly
expressed in the rumen and the liver and the gene encoding ARK1C4 in the rumen, liver
and duodenum (Fig. 4). The products of these genes are also likely to be involved in the
metabolism of steroids in the rumen epithelium. In addition, we observed marked pathway
enrichment of flavonoid biosynthetic process due to the identification of five members of
the UDP-glucuronosyltransferase (UGT) gene family (Well et al., 2004), with the highest
expression levels in the rumen and liver (Table S2). Flavonoids are only produced by
plants, but UGT enzymes are highly active in mammals and catalyze the glucuronidation
of a diverse chemical base including steroids, bile acids and opioids (Well et al., 2004).
The functions of the products of these genes in the rumen require further investigation.
However, results discussed here suggest important interactions between the rumen wall
and activity of steroids.

Comparison of the sheep and pig GIT transcriptomes
To compare the ruminant and a closely related non-ruminantmammal GIT transcriptomes
(Jiang et al., 2014), we mapped those transcripts previously reported to show specific
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Table 2 Representation of the pig GIT gene clusters in the sheep GIT network.

Pig clustera Pig tissuesa Pig cell type of
originb

Overlap P-valueb Representation Sheep tissues Go term
enrichment

P-valuec

Overall 179 8.1E–31 Over Cell cycle
process

2.0E–13

1, 7 Intestine Immune cells/cell
cycle

58 2.4E–11 Over Epithelia, intestine Cell cycle
process

1.5E–33

3, 8 Tongue-oesophagus Stratified squamous
epithelia

73 1.3E–34 Over Rumen, epithelia,
abomasum, large
intestine

Epidermis
development

2.9E–05

2, 4, 9 Oesophagus-stomach Muscle 9 0.0002d Underd Rumen, abomasum na
6, 13, 15 Salivary gland Stratified columnar

epithelia
4 0.1777 None na

5, 12, 14, 16 Stomach-intestine Ciliate/glandular
epithelia

35 5.4E–09 Over Stomach intestine na

10 Stomach Neuronal 0 na na na

Notes.
aNumbers, names and grouping of pig gene clusters by cell type of origin are according to Freeman et al. (2012).
bCalculated hypogeometric P values, representing the significance of representation of pig genes in sheep gene network.
cFDR corrected GO term enrichment P values.
dIf overlap with just the rumen and rumen-abomasum clusters, significant (P = 8E–05) over representation.
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Figure 4 Gene expression profiles of metabolic processes discussed in the text.Data are presented with
log2 Fragments Per Kilobase of exon per Million fragments mapped (FPKM) values along with the subcel-
lular locations and/or tissues of pig (Freeman et al., 2012) and human (Genevestigator (Hruz et al., 2008)
analysis) where these genes showed high expression. Texts and bars on the left side of the heatmap indicate
involved pathways for covered genes described in the article. Cellular location information were derived
from GENATLAS database (Frezal, 1998).

Xiang et al. (2016), PeerJ, DOI 10.7717/peerj.1762 13/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.1762


expression patterns in the pig GIT (Freeman et al., 2012) to the sheep gene network (Fig.
2B). Pig is the genomically closest non-ruminant to the ruminants (Groenen et al., 2012;
Jiang et al., 2014) for which sufficient GIT transcriptome data is available. The overall
overlap of the 639 genes in the sheep GIT network and the 2,634 mappable pig GIT genes is
179, which is highly significant (Table 2). The smaller number of genes showing differential
expression in our study versus the pig study is due to the application of stringent statistical
filtering thresholds to minimize the impact of the small number of samples per tissue.
However, the overlap of 627 genes between the set of 2,475 sheep genes identified using
relaxed filtering criteria and the 2,634 pig genes was also highly significant (P < 10E−20),
supporting the robustness of the approach. The set of 179 overlapping genes was highly
significantly enriched for the GO-term ‘‘cell cycle process’’ (Table 2). The overlap of
genes between the pig intestine clusters and the sheep epithelia-intestine cluster was
highly significant and the overlap genes were again very highly significantly enriched for
the GO-term ‘‘cell cycle process’’ (Table 2). A full list of the genes in the overlap and
assignment to the pig and sheep gene clusters is available (Table S5). Furthermore, pig
genes preferentially expressed in the tongue and oesophagus have a highly significant
overlap with sheep genes with high expression in the rumen and epithelial tissues (Fig. 2B),
enriched for the GO-term ‘‘epidermis development’’ (Table 2). Our results emphasises the
contribution of cell cycle to the renewal of mammalian GIT epithelial surfaces (Crosnier,
Stamataki & Lewis, 2006).

Ruminant specific pathways for SCFA uptake and GIT metabolism?
SCFAs are the major source of energy in ruminants, with the primary sources of SCFAs
being the rumen, and to amuch lesser extent the large intestine. Carbonic anhydrases, which
hydrate CO2 to bicarbonate, are thought to play a significant role in the uptake of SCFAs
by an SCFA/bicarbonate antiporter, and by providing protons at the rumen epithelium to
neutralize the SCFAs and promote their diffusion into the ruminal epithelium (Bergman,
1990; Wang, Baldwin & Jesse, 1996). There are many members of the carbonic anhydrase
gene family (Tashian, 1989), several of which are expressed in mammalian gastrointestinal
tissues (Freeman et al., 2012; Kivel et al., 2005; Parkkila et al., 1994; Tashian, 1989). In ru-
minants, CA1 has previously been reported to encode a rumen specific carbonic anhydrase
with low activities in the blood (unlike in other mammals) and in the large intestines
(Carter, 1971). Consistent with this, compared to all of the other tissues in our dataset,
CA1 is highly expressed in the rumen and, albeit with lower but significant expression, in
the large intestine (Fig. 4). CA2 and CA7 appear to encode the major carbonic anhydrases
in the large intestines (Fig. 4). In humans CA1, CA2 and CA7 are highly expressed in the
colon (Genevestigator (Hruz et al., 2008) analysis). In contrast in pigs, whilst CA2 is highly
expressed in the stomach, it is not highly expressed in the large intestine and CA1 and CA7
were not reported to be differentially expressed across the GIT (Freeman et al., 2012).

The apical membrane SCFA/bicarbonate antiporter exchanges intracellular bicarbonate
with intra-ruminal SCFA and consistent with previous publications, SLC4A9, preferentially
expressed in the rumen in our dataset (Fig. 4), encodes the most likely antiporter. The
proposed basolateral membrane SCFA/bicarbonate antiporter gene SLC16A1 (exchanges
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intracellular SCFA with blood bicarbonate), which has highest expression in the rumen in
our dataset, followed by the colon and rectum, has a much more general expression across
the tissues than SLC4A9 (Fig. 4). These expression patterns are consistent with previous
findings in cattle (Connor et al., 2010). SLC16A1 is also likely to be involved in the transport
of ketone bodies into the blood supply to the basolateral surface of the rumen epithelium
(Van Hasselt et al., 2014).

HCO−3 -independent apical uptake of acetate from the rumen has also been observed
(Aschenbach et al., 2009). However, the transporter has not been identified, with candidates
proposed in the SLC4A, SLC16A, SLC21A, SLC22A and SLC26A families (Aschenbach et
al., 2009). Members of the SLC21A and SLC22A families showed generally low expression
in the rumen in our study (Table S2). In addition to SLC16A1 and SLC4A9 discussed
above, SLC26A2 and SLC26A3 are highly expressed in the rumen in our dataset (Fig. 4).
Both genes encode apical anion exchangers confirming them as candidates for encoding the
apical HCO−3 -independent acetate uptake transporter. SLC26A3 is a Cl

−/HCO−3 exchanger
(see fluid and electrolyte balance section below) and therefore is unlikely to be an HCO−3 -
independent acetate transporter. However, SLC26A2 is a SO2−

4 /OH−/Cl− exchanger
(Ohana et al., 2012) and remains a candidate for the proposed apical HCO−3 -independent
acetate transporter. An HCO−3 -independent basolateral maxi-anion channel for SCFA−

efflux to blood has also been proposed without an assigned transporter (Georgi et al., 2014).
A survey of ABC (ATP-binding cassette) family transporters identified ABCC3 as the most
preferentially expressed in the rumen in our dataset and with the second highest expression
in the large intestine (Fig. 4). ABBC3 is an organic anion transporter with a possible role
in biliary transport and intestinal excretion (Rost et al., 2002). Therefore, ABCC3 may be
involved in the efflux transport of SCFA− from the rumen epithelium to blood.

In most mammals, including humans, the liver is the major site of the synthesis of
ketone bodies (acetoacetate and beta-hydroxybutyrate), but in ruminants the epithelium
of the rumen is a major site of de novo ketogenesis (Lane, Baldwin & Jesse, 2002).HMGCS2
encodes an HMG-CoA synthase (3-hydroxy-3-methylglutaryl-CoA Synthase 2) in the
ketogenesis pathway (Fig. 5). This gene is significantly associated with cattle butyrate
metabolism (Baldwin et al., 2012) and the encoded enzyme was predicted to be the rate
limiting enzyme in sheep ruminal ketone body synthesis (Lane, Baldwin & Jesse, 2002).
As expected, in our data HMGCS2 is highly expressed in the rumen compared to the
other GIT tissues and the liver (Fig. 4). ACADS, HMGCL and BHD1, which encode other
enzymes involved in the ketone body pathway (Fig. 5), are also highly expressed in the
rumen relative to most of the other tissues studied (Fig. 4). HMGCS1 and ACAT2 may also
contribute to the ketone body pathway in the rumen, but their highest expression levels
are in the liver (Table S1). However, their expression in the rumen has been reported to
actively respond to different diets (Steele et al., 2011b) and acidosis conditions (Steele et al.,
2012) in cattle. WhilstHMGCS2 is quite highly expressed in the colon, in contrast ACADS,
HMGCL and BHD1 are not highly expressed (Fig. 4), consistent with the colon not being a
major contributor to ketone body synthesis. Genes encoding enzymes for other steps in the
pathways from acetate and butyrate to ketone bodies are much more generally expressed
across the tissues, although expression of ECHS1 and ACAT1 are significantly higher in
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the rumen than in other GIT tissues (Fig. 4). In humans, in addition to the liver, HMGCS2
also has high expression in the intestine, including the jejunum and colon (Genevestigator
(Hruz et al., 2008) analysis). In contrast, the only enzyme in the pathway (Figs. 4 and 5)
reported to be preferentially expressed in the pig GIT was BDH1, in the fundus of the
stomach (Table S5). Thus the rumen, abomasum, duodenum, caecum, colon and rectum
in sheep all appear to have subtly different SCFA transport and metabolism systems, and
in the equivalent compartments of the GIT appear to be different between sheep, humans
and pigs.

Long chain fatty acids (LCFAs) uptake, cholesterol homeostasis and
bile acid recycling
Due to the activity of the microbial populations of the rumen and the production of SCFAs
ruminants have less reliance on dietary LCFAs than non-ruminants. Does this reduced
importance lead to detectable differences in the transcriptome? The small intestine is the
principal site of uptake of LCFA and cholesterol homeostasis, and consistent with this the
genes encoding the well characterized components of the intestinal fatty acid uptake (CD36,
SLC27A2/4/5 and FABP2 (Wang et al., 2013)) and cholesterol homeostasis (NPC1L1 and
ABCG5/8 (Wang et al., 2013)) systems are expressed in the sheep small intestine (Fig. 4),
as they are in humans and most are in the pig (Freeman et al., 2012). FABP2 and ABCG5
are particularly preferentially expressed in the sheep small intestine relative to other GIT
tissues (Fig. 4). However, it is thought that the major route of LCFA uptake at the apical
membrane of the GIT epithelium is by passive diffusion (Abumrad & Davidson, 2012).

Bile acids secreted by the liver and stored in the gall bladder before being released into
the small intestine play a major role in the uptake of LCFAs. Bile acids are recycled in the
intestine. SLC10A2 in the apical membrane and SLC51A and SLC51B in the basolateral
membrane are proposed to constitute the uptake systems in the human small intestine
(Ballatori et al., 2013). SLC10A2 is also preferentially expressed in the small intestines of
the pig, but preferential expression of SLC51A/B has not been reported (Freeman et al.,
2012). In sheep SLC10A2 is preferentially expressed in the small intestine, albeit it a low
level (Fig. 4). Whilst SLC51B is highly expressed in the duodenum in sheep, the highest
expression of the two subunits together in sheep (SLC51A/B) is in the caecum and the
colon (Fig. 4), where they are also expressed in humans and mice (Genevestigator (Hruz
et al., 2008) analysis). Although described as subunits of a complex, SLC51A and SLC51B
have also been reported to be regulated differently (Ballatori et al., 2013), thus the balance
between expression of SLC10A2 and SLC51A and SLC51B may indicate differences in the
bile acid uptake pathways in the duodenum, large intestines and liver of sheep.

Overall despite the reduced importance of LCFAs sheep appear to have a very similar
systems to human and pigs for LCFA uptake and bile acid recycling.

Saccharide metabolism
Again as a consequence of the activity of the rumen microbes in mature ruminants the
uptake of dietary glucose may be less than 10% of glucose requirements (Young, 1977).
The dietary glucose comes primarily from the degradation of polysaccharides, in particular
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Figure 5 Ruminant ketone bodymetabolism pathways. Key enzyme encoding genes (red text) and
pathways (black arrow) are highlighted.

in the small intestine of starch that has escaped degradation by the rumen microbial
population. The primary source of alpha-amylase required to digest the long polymers
is the pancreas, which was not investigated in this study. Genes encoding three enzymes
likely to contribute to the digestion of starch and other alpha-glycans, MGAM (maltase-
glucoamylase), MGAM2 (maltase-glucoamylase 2) and SI (sucrase-isomaltase) (Nichols et
al., 2003), were preferentially expressed in the tissues studied here. SI was preferentially
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expressed in the intestine-low in rectum gene cluster, MGAM2 was highly expressed
in all intestinal tissues, while MGAM was also preferentially expressed in the intestine
(primarily the duodenum), but at a much lower level (Fig. 4). In humans (Genevestigator
(Hruz et al., 2008) analysis) and pigs (Freeman et al., 2012), both MGAM and SI are
preferentially expressed in the small intestine. Expression of the orthologues of MGAM2
has not been reported in the GIT of humans (Genevestigator (Hruz et al., 2008) analysis)
or pigs (Freeman et al., 2012).

The mammalian MGAM and MGAM2 genes appear to have arisen by tandem
duplication of a single ancestral gene at the base of themammals (Nichols et al., 2003;Nichols
et al., 1998). MGAM2 genes are present in most mammals, but are not well characterized
in any species. Comparative analysis of the protein sequences of MGAM and MGAM2
showed that MGAM2 has additional sequence at the carboxy-terminus comprised of
multiple copies of a 40 amino acid repeat not present in MGAM (Fig. 6). The repeat unit
is enriched in serine and threonine, with similar sequences in the predicted sheep, cattle,
pig and to a much lesser extent human proteins (Fig. 6). The repeat unit of MGAM2 is
predicted to be heavily glycosylated (analysis of Steentoft et al. (2013)) to form a mucin-like
domain. As in the rumen, the microbial population in the large intestine ferments plant
material, contributing up to 10% of the total carbohydrate fermentation and conversion to
SCFAs in the ruminant GIT (Gressley, Hall & Armentano, 2011).Whilst the role ofMGAM2
is unclear it appears to represent a contribution from the host to the breakdown of plant
polysaccharides by the bacterial population in the large intestine. MGAM produces glucose
from maltose and MGAM2 may have a similar functionality, and therefore contribute to
the uptake of the scarce supply of glucose in ruminants. Alternatively the high expression
of MGAM2 and low expression of MGAM may reflect the reduced availability of glucose
in the rumen GIT. Further investigation of this gene and the activity and function of its
encoded protein will improve our understanding of carbohydrate metabolism in the large
intestine of ruminants.

In humans the major uptake of glucose in the GIT occurs in the small intestine via
SLC5A1 (aka SGLT1) in the apical membrane, and SLC2A2 (aka GLUT2) in the basolateral
membrane (Roder et al., 2014). The expression pattern of these two genes in sheep (Fig. 4)
and pigs (Freeman et al., 2012) is consistent with a similar process in all three species.

Nitrogen acquisition and recycling
A high level of nitrogen recycling in the GIT is a characteristic of ruminants. Urea is
the major input from the animal (primarily via the saliva and the rumen epithelium)
and anabolic-N sources (in the small intestine) and ammonia (in the rumen, small and
large intestines) are the major uptake molecules from the GIT (Lapierre & Lobley, 2001).
SLC14A1 (Fig. 4), encoding SLC14A1 which mediates the basolateral cell membrane
transport of urea, a key process in nitrogen secretion into the GIT (Abdoun et al., 2010),
is highly preferentially expressed in the rumen in our dataset (Fig. 4). However, in cattle
expression of SLC14A1 was not affected by differences in dietary N (Rojen et al., 2011) and
doubts remain about the role of SLC14A1 in increasing rumen epithelial urea permeability
at low dietary N. Urea is also thought to be released by the epithelium of the small and
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Figure 6 Organization of the MGAM2 carboxy-teminus. Consensus motifs of the serine/threonine rich
40 amino acid repeats at the carboxy-terminus of predicted MGAM2 proteins. (A) sheep. (B) cattle. (C)
Pig. (D) human.

Xiang et al. (2016), PeerJ, DOI 10.7717/peerj.1762 19/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.1762


large intestines (Lapierre & Lobley, 2001), but our analysis did not identify a potential
transporter.

Urea is converted to ammonia by microbial ureases and is used by rumen
microorganisms to synthesize microbial proteins (75–85% of microbial N) and nucleic
acids (15–25% of microbial N) (Fujihara & Shem, 2011) which are subsequently digested
by the host in the intestines, thus recovering the majority of the secreted nitrogen (Abdoun,
Stumpff & Martens, 2006). Consistent with this, SLC3A1 (neutral and basic amino acid
transporter) in our study is preferentially expressed in the duodenum (Fig. 4), as is
SLC28A2 (concentrative nucleoside transporter) the product of which plays an important
role in intestinal nucleoside salvage and energy metabolism (Huber-Ruano et al., 2010).
Both genes were also highly expressed in the small intestine of pigs (Freeman et al., 2012)
and humans (Genevestigator (Hruz et al., 2008) analysis). RHBG (SLC42A2), an ammonia
transporter, is preferentially expressed in the sheep small and large intestines and the liver
(Fig. 4) and is a candidate for an intestinal ammonia transporter. However, RHBG is not
expressed at particularly high levels in the human GIT (Genevestigator (Hruz et al., 2008)
analysis) relative to many other tissues, and was not reported to be preferentially expressed
in the pig GIT (Freeman et al., 2012). In humans uptake of ammonia in the large intestine
is thought to most likely occur (mainly) by passive non-ionic diffusion (Wrong & Vince,
1984). However, RHCG (apical membrane) and RHBG (basolateral membrane) have also
been proposed to constitute an ammonium uptake pathway in the humanGIT (Handlogten
et al., 2005). The expression profile of RHCG in sheep (Fig. 4) is not consistent with such
a pathway in sheep.

In addition to the secretion of urea into the rumen (a ruminant specific process) the
increased importance of nitrogen recycling in ruminants may have led to the apparent
increased expression of RHBG in the GIT of sheep.

Iodine recycling
SLC5A5, member 5 of solute carrier family 5, encoding a sodium iodide symporter is
highly preferentially expressed in the abomasum in our study (Fig. 4). SLC5A5 also has
higher expression in human (Genevestigator (Hruz et al., 2008) analysis) and rat stomach
(Kotani et al., 1998) than in other digestive tissues. The latter authors reported that the
distribution of SLC5A5 transcripts in the stomach epithelium was consistent with a role
of SLC5A5 in the import or export of iodine, from or to the stomach contents. In the rat,
iodine is actively transported into the gastric lumen and this transport is at least partly
mediated by a sodium-iodide symporter (Josefsson et al., 2006). In cattle the rate of iodine
export by the abomasum epithelium into the abomasum is much greater than the import
of iodine from the abomasum (Miller, Swanson & Spalding, 1975), suggesting that the
role of SLC5A5 in sheep abomasum is to export iodine into the stomach contents. In
contrast, SLC5A5 was not reported to be significantly more expressed in the pig stomach
versus other components of the GIT (Freeman et al., 2012). The specific physiological
role of iodine in the stomach/GIT is unknown, but a number of possibilities have been
suggested: iodine-conservingmechanisms to deal with low iodine concentrations in the diet
(Miller, Swanson & Spalding, 1975), antioxidative activity (Venturi & Venturi, 1999) and
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antimicrobial activity (Spitzweg et al., 1999). The majority of the secreted iodine is thought
to be recovered in the lower intestines. Another member from the same transporter family
SLC5A6, a sodium/multivitamin and iodide co-transporter (De Carvalho & Quick, 2011),
encoded by a gene showing expression in all studied tissues, with the highest expression
sheep large intestine (Fig. 4) is a likely candidate for the iodine importer. In humans,
SLC5A6 is also expressed in a wide range of tissues with intestinal tissues being close to the
top of the list (De Carvalho & Quick, 2011). In pigs, SLC5A6 is preferentially expressed in
the small intestine (Freeman et al., 2012). The high expression of SLC5A5 in the abomasum
suggests that ruminants may have retained a higher dependence on iodine in the GIT than
other mammals.

Zinc homeostasis
SLC39A4 encodes a transporter protein essential for zinc uptake in the mouse intestine
(Dufner-Beattie et al., 2003) and stomach (Martin et al., 2013). SLC39A4 is highly expressed
in stomach and intestines in sheep (Fig. 4) and humans (Genevestigator (Hruz et al.,
2008) analysis), and showed the highest expression in pig small intestine (Freeman et al.,
2012). Another zinc transporter encoding gene, SLC39A5, has a similar expression profile
to SLC39A4 in sheep (Fig. 4), humans and pigs. However, SLC39A5 is located in the
basolateral membrane and is involved in the secretion of zinc. In mouse gastrointestinal
tract cells the two zinc transporters are reciprocally regulated (Weaver et al., 2007), together
controlling the influx and efflux of zinc at the intestinal epithelium. It appears likely that
sheep have a similar mechanism for zinc homeostasis to other mammals.

Fluid and electrolyte balance
Maintaining salt and water balance is an important function of the mammalian GIT.
In the large intestine significant GO term enrichment was identified for regulation of
chloride transport, due to the inclusion of CA2, 7 and CFTR (Table 1, Fig. 4). This is in
agreement with the reported critical chloride secretory mechanism in intestinal epithelial
cells, associated with mucosal hydration (Barrett & Keely, 2000). SLC26A3, which is a
Cl−/HCO−3 antiporter, imports Cl− ions driven by bicarbonate, thus linking the activity
of carbonic anhydrases and the leakage of Cl− out of the cells by CFTR. SLC26A3 is
preferentially expressed in the large intestine of sheep (Fig. 4) and the colon of pigs. Thus
the expression of genes involved in fluid and electrolyte balance is similar between all three
species.

CONCLUSIONS
As a significant event in the evolution of the true ruminants, the evolutionary origin of the
rumen is the subject of debate, with out-pouching of the oesophagus, or of the stomach,
as the two most likely origins (Beck, Jiang & Zhang, 2009; Langer, 1988). The cornification
of the epithelia surface, tissue clustering analysis based on gene expression (driven by the
epidermal structural proteins and innate immunity genes) and the relative lack ofmetabolic
overlap with the abomasum strongly favours an oesophageal origin. Metabolically the
rumen has many similarities with the liver, especially for SCFA metabolism and even
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though there are functional similarities with the large intestine, the complements of genes
involved are not highly similar.

We have identified a small number of highly rumen specific metabolic processes, in
particular the roles of SLC14A1 (urea secretion), SLC4A9 (SCFA uptake) and AKR1C1
(uncertain function). Overall our analysis has enabled gene expression data to be married
up with decades of physiological and other research to link transport and enzymatic
activities and the most likely genes encoding products with the activities. Nitrogen and
iodine recycling have been identified as processes with a much greater importance in the
sheep than in humans or pigs. These metabolic functions are protected by strong immune
functions and stratified epidermis-like epithelium. The major rumen immune players are
DUOX and SERPINB gene families andDUOXA2,DUOX2s and SERPINB3/4-like 1 appear
to be preferentially expressed in the rumen. These findings will bring novel insights into
biomedical research on mammalian digestive and gastrointestinal systems.
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