298 research outputs found

    Effect of pre-contraction on β-adrenoceptor-mediated relaxation of rat urinary bladder

    Get PDF
    Purpose The human physiological bladder contraction is largely mediated by acetylcholine acting on muscarinic receptors, but in pathophysiological settings the relative role of non-cholinergic stimuli gains importance. beta-Adrenoceptor agonists are currently in clinical development as treatments for the overactive bladder syndrome. Therefore, we have explored the ability of the beta-adrenoceptor agonist isoprenaline to induce rat isolated bladder strip relaxation on pre-contraction with the muscarinic agonist carbachol as compared to bladder tone induced by several non-cholinergic stimuli. Methods Bladder tone was induced by passive tension, receptor independently by KCl, carbachol, bradykinin or serotonin. Concentration-response curves were generated for relaxation by isoprenaline, and a single concentration of the receptor-independent relaxant forskolin was also tested. Results The various contractile stimuli induced different degrees of bladder tone, but the ability of isoprenaline or forskolin to relax rat bladder was not correlated with the degree of tone. Isoprenaline was significantly less potent and effective in causing relaxation against carbachol-induced tone than against any other stimulus, whereas no such relationship was observed for forskolin. Conclusions We conclude that beta-adrenoceptor agonists can induce rat bladder relaxation against a wide range of contractile stimuli and are more potent and/or effective against non-cholinergic stimuli than against muscarinic agonism. This profile appears desirable for agents intended for the treatment of overactive bladde

    Mineral maturity and crystallinity index are distinct characteristics of bone mineral

    Get PDF
    The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis

    Muscarinic receptor subtypes and signalling involved in the attenuation of isoprenaline-induced rat urinary bladder relaxation

    Get PDF
    β-Adrenoceptors are important mediators of smooth muscle relaxation in the urinary bladder, but the concomitant presence of a muscarinic agonist, e.g., carbachol, can attenuate relaxation responses by reducing potency and/or efficacy of β-adrenoceptor agonists such as isoprenaline. Therefore, the present study was designed to explore the subtypes and signalling pathways of muscarinic receptors involved in the attenuation of isoprenaline-induced isolated rat detrusor preparations using novel subtype-selective receptor ligands. In radioligand binding studies, we characterized BZI to be a M3-sparing muscarinic agonist, providing selective M2 stimulation in rat bladder, and THRX-182087 as a highly M2-selective antagonist. The use of BZI and of THRX-182087 in the presence of carbachol enabled experimental conditions with a selective stimulation of only M2 or M3 receptors, respectively. Confirming previous findings, carbachol attenuated isoprenaline-induced detrusor relaxation. M2-selective stimulation partly mimicked this attenuation, indicating that both M2 and M3 receptors are involved. During M3-selective stimulation, the attenuation of isoprenaline responses was reduced by the phospholipase C inhibitor U 73,122 but not by the protein kinase C inhibitor chelerythrine. We conclude that both M2 and M3 receptors contribute to attenuation of β-adrenoceptor-mediated relaxation of rat urinary bladder; the signal transduction pathway involved in the M3 component of this attenuation differs from that mediating direct contractile effects of M3 receptors

    Similarities and differences in the autonomic control of airway and urinary bladder smooth muscle

    Get PDF
    The airways and the urinary bladder are both hollow organs serving very different functions, i.e. air flow and urine storage, respectively. While the autonomic nervous system seems to play only a minor if any role in the physiological regulation of airway tone during normal breathing, it is important in the physiological regulation of bladder smooth muscle contraction and relaxation. While both tissues share a greater expression of M2 than of M3 muscarinic receptors, smooth muscle contraction in both is largely mediated by the smaller M3 population apparently involving phospholipase C activation to only a minor if any extent. While smooth muscle in both tissues can be relaxed by β-adrenoceptor stimulation, this primarily involves β2-adrenoceptors in human airways and β3-adrenoceptors in human bladder. Despite activation of adenylyl cyclase by either subtype, cyclic adenosine monophosphate plays only a minor role in bladder relaxation by β-agonists; an important but not exclusive function is known in airway relaxation. While airway β2-adrenoceptors are sensitive to agonist-induced desensitization, β3-adrenoceptors are generally considered to exhibit much less if any sensitivity to desensitization. Gene polymorphisms exist in the genes of both β2- and β3-adrenoceptors. Despite being not fully conclusive, the available data suggest some role of β2-adrenoceptor polymorphisms in airway function and its treatment by receptor agonists, whereas the available data on β3-adrenoceptor polymorphisms and bladder function are too limited to allow robust interpretation. We conclude that the distinct functions of airways and urinary bladder are reflected in a differential regulation by the autonomic nervous system. Studying these differences may be informative for a better understanding of each tissue

    Six-year follow-up of slaughterhouse surveillance (2008-2013): the Catalan Slaughterhouse Support Network (SESC)

    Get PDF
    Meat inspection has the ultimate objective of declaring the meat and offal obtained from carcasses of slaughtered animals fit or unfit for human consumption. This safeguards the health of consumers by ensuring that the food coming from these establishments poses no risk to public health. Concomitantly, it contributes to animal disease surveillance. The Catalan Public Health Protection Agency (Generalitat de Catalunya) identified the need to provide its meat inspectors with a support structure to improve diagnostic capacity: the Slaughterhouse Support Network (SESC). The main goal of the SESC was to offer continuing education to meat inspectors to improve the diagnostic capacity for lesions observed in slaughterhouses. With this aim, a web-based application was designed that allowed meat inspectors to submit their inquiries, images of the lesions, and samples for laboratory analysis. This commentary reviews the cases from the first 6 years of SESC operation (2008–2013). The program not only provides continuing education to inspectors but also contributes to the collection of useful information on animal health and welfare. Therefore, SESC complements animal disease surveillance programs, such as those for tuberculosis, bovine cysticercosis, and porcine trichinellosis, and is a powerful tool for early detection of emerging animal diseases and zoonoses

    The muscarinic receptor antagonist propiverine exhibits α1-adrenoceptor antagonism in human prostate and porcine trigonum

    Get PDF
    Combination therapy of male lower urinary tract symptoms with α(1)-adrenoceptor and muscarinic receptor antagonists attracts increasing interest. Propiverine is a muscarinic receptor antagonist possessing additional properties, i.e., block of L-type Ca(2+) channels. Here, we have investigated whether propiverine and its metabolites can additionally antagonize α(1)-adrenoceptors. Human prostate and porcine trigone muscle strips were used to explore inhibition of α(1)-adrenoceptor-mediated contractile responses. Chinese hamster ovary (CHO) cells expressing cloned human α(1)-adrenoceptors were used to determine direct interactions with the receptor in radioligand binding and intracellular Ca(2+) elevation assays. Propiverine concentration-dependently reversed contraction of human prostate pre-contracted with 10 μM phenylephrine (-log IC(50) [M] 4.43 ± 0.08). Similar inhibition was observed in porcine trigone (-log IC(50) 5.01 ± 0.05), and in additional experiments consisted mainly of reduced maximum phenylephrine responses. At concentrations ≥1 μM, the propiverine metabolite M-14 also relaxed phenylephrine pre-contracted trigone strips, whereas metabolites M-5 and M-6 were ineffective. In radioligand binding experiments, propiverine and M-14 exhibited similar affinity for the three α(1)-adrenoceptor subtypes with -log K (i) [M] values ranging from 4.72 to 4.94, whereas the M-5 and M-6 did not affect [(3)H]-prazosin binding. In CHO cells, propiverine inhibited α(1)-adrenoceptor-mediated Ca(2+) elevations with similar potency as radioligand binding, again mainly by reducing maximum responses. In contrast to other muscarinic receptor antagonists, propiverine exerts additional L-type Ca(2+)-channel blocking and α(1)-adrenoceptor antagonist effects. It remains to be determined clinically, how these additional properties contribute to the clinical effects of propiverine, particularly in male voiding dysfunctio

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Measurement of jet fragmentation into charged particles in pp and PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    Jet fragmentation in pp and PbPb collisions at a centre-of-mass energy of 2.76 TeV per nucleon pair was studied using data collected with the CMS detector at the LHC. Fragmentation functions are constructed using charged-particle tracks with transverse momenta pt > 4 GeV for dijet events with a leading jet of pt > 100 GeV. The fragmentation functions in PbPb events are compared to those in pp data as a function of collision centrality, as well as dijet-pt imbalance. Special emphasis is placed on the most central PbPb events including dijets with unbalanced momentum, indicative of energy loss of the hard scattered parent partons. The fragmentation patterns for both the leading and subleading jets in PbPb collisions agree with those seen in pp data at 2.76 TeV. The results provide evidence that, despite the large parton energy loss observed in PbPb collisions, the partition of the remaining momentum within the jet cone into high-pt particles is not strongly modified in comparison to that observed for jets in vacuum.Comment: Submitted to the Journal of High Energy Physic

    The Orphan Gene ybjN Conveys Pleiotropic Effects on Multicellular Behavior and Survival of Escherichia coli

    Get PDF
    YbjN, encoding an enterobacteria-specific protein, is a multicopy suppressor of temperature sensitivity in the ts9 mutant strain of Escherichia coli. In this study, we further explored the role(s) of ybjN. First, we demonstrated that the ybjN transcript was about 10-fold lower in the ts9 strain compared to that of E. coli strain BW25113 (BW). Introduction of multiple copies of ybjN in the ts9 strain resulted in over-expression of ybjN by about 10-fold as compared to that of BW. These results suggested that temperature sensitivity of the ts9 mutant of E. coli may be related to expression levels of ybjN. Characterization of E. coli ybjN mutant revealed that ybjN mutation resulted in pleiotropic phenotypes, including increased motility, fimbriation (auto-aggregation), exopolysaccharide production, and biofilm formation. In contrast, over-expression of ybjN (in terms of multiple copies) resulted in reduced motility, fimbriation, exopolysaccharide production, biofilm formation and acid resistance. In addition, our results indicate that a ybjN-homolog gene from Erwinia amylovora, a plant enterobacterial pathogen, is functionally conserved with that of E. coli, suggesting similar evolution of the YbjN family proteins in enterobacteria. A microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, amino acid and nucleotide metabolism. Furthermore, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS response pathway, cold shock and starvation induced transporter genes. Collectively, these results suggest that YbjN may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions in E. coli. These results also suggest that ybjN over-expression-related temperature rescue of the ts9 mutant may be due to down-regulation of metabolic activity and activation of stress response genes in the ts9 mutant
    corecore