33 research outputs found

    Alternating-Gradient Focusing of the Benzonitrile-Argon Van der Waals Complex

    Full text link
    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C6_6H5_5CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within \pm5%. By exploiting the different dipole-moment-to-mass (\mu/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex.Comment: to be published in JC

    Laser-induced 3D alignment and orientation of quantum-state-selected molecules

    Get PDF
    A strong inhomogeneous static electric field is used to spatially disperse a rotationally cold supersonic beam of 2,6-difluoroiodobenzene molecules according to their rotational quantum state. The molecules in the lowest lying rotational states are selected and used as targets for 3-dimensional alignment and orientation. The alignment is induced in the adiabatic regime with an elliptically polarized, intense laser pulse and the orientation is induced by the combined action of the laser pulse and a weak static electric field. We show that the degree of 3-dimensional alignment and orientation is strongly enhanced when rotationally state-selected molecules, rather than molecules in the original molecular beam, are used as targets.Comment: 8 pages, 7 figures; v2: minor update

    Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states

    Get PDF
    The Stark deceleration of OH radicals in both low-field-seeking and high-field-seeking levels of the rovibronic 2Π3/2,v=0,J=3/2{}^2\Pi_{3/2},v=0,J=3/2 ground state is demonstrated using a single experimental setup. Applying alternating-gradient focusing, OH radicals in their low-field-seeking 2Π3/2,v=0,J=3/2,f{}^2\Pi_{3/2},v=0,J=3/2,f state have been decelerated from 345 m/s to 239 m/s, removing 50 % of the kinetic energy using only 27 deceleration stages. The alternating-gradient decelerator allows to independently control longitudinal and transverse manipulation of the molecules. Optimized high-voltage switching sequences for the alternating-gradient deceleration are applied, in order to adjust the dynamic focusing strength in every deceleration stage to the changing velocity over the deceleration process. In addition we have also decelerated OH radicals in their high-field-seeking 2Π3/2,v=0,J=3/2,e{}^2\Pi_{3/2},v=0,J=3/2,e state from 355 m/s to 316 m/s. For the states involved, a real crossing of hyperfine levels occurs at 640 V/cm, which is examined by varying a bias voltage applied to the electrodes.Comment: 8 pages, 9 figure

    Quantum-state selection, alignment, and orientation of large molecules using static electric and laser fields

    Get PDF
    Supersonic beams of polar molecules are deflected using inhomogeneous electric fields. The quantum-state selectivity of the deflection is used to spatially separate molecules according to their quantum state. A detailed analysis of the deflection and the obtained quantum-state selection is presented. The rotational temperatures of the molecular beams are determined from the spatial beam profiles and are all approximately 1 K. Unprecedented degrees of laser-induced alignment (=0.972)(=0.972) and orientation of iodobenzene molecules are demonstrated when the state-selected samples are used. Such state-selected and oriented molecules provide unique possibilities for many novel experiments in chemistry and physics.Comment: minor changes, references update

    A selector for structural isomers of neutral molecules

    Get PDF
    We have selected and spatially separated the two conformers of 3-aminophenol (C6_6H7_7NO) present in a molecular beam. Analogous to the separation of ions based on their mass-to-charge ratios in a quadrupole mass filter, the neutral conformers are separated based on their different mass-to-dipole-moment ratios in an ac electric quadrupole selector. For a given ac frequency, the individual conformers experience different focusing forces, resulting in different transmissions through the selector. These experiments demonstrate that conformer-selected samples of large molecules can be prepared, offering new possibilities for the study of gas-phase biomolecules.Comment: 4 pages, 4 figures (Revtex

    Manipulating the motion of large neutral molecules

    Get PDF
    Large molecules have complex potential-energy surfaces with many local minima. They exhibit multiple stereo-isomers, even at very low temperatures. In this paper we discuss the different approaches for the manipulation of the motion of large and complex molecules, like amino acids or peptides, and the prospects of state- and conformer-selected, focused, and slow beams of such molecules for studying their molecular properties and for fundamental physics studies. Accepted for publication in Faraday Disc. 142 (2009), DOI: 10.1039/b820045aComment: 12 page

    Precise dipole moments and quadrupole coupling constants of the cis and trans conformers of 3-aminophenol: Determination of the absolute conformation

    Full text link
    The rotational constants and the nitrogen nuclear quadrupole coupling constants of cis-3-aminophenol and trans-3-aminophenol are determined using Fourier-transform microwave spectroscopy. We examine several J=21J=2\leftarrow{}1 and 101\leftarrow{}0 hyperfine-resolved rotational transitions for both conformers. The transitions are fit to a rigid rotor Hamiltonian including nuclear quadrupole coupling to account for the nitrogen nucleus. For cis-3-aminophenol we obtain rotational constants of A=3734.930 MHz, B=1823.2095 MHz, and C=1226.493 MHz, for trans-3-aminophenol of A=3730.1676 MHz, B=1828.25774 MHz, and C=1228.1948 MHz. The dipole moments are precisely determined using Stark effect measurements for several hyperfine transitions to μa=1.7735\mu_a=1.7735 D, μb=1.5195\mu_b=1.5195 D for cis-3-aminophenol and μa=0.5563\mu_a=0.5563 D, μb=0.5376\mu_b=0.5376 D for trans-3-aminophenol. Whereas the rotational constants and quadrupole coupling constants do not allow to determinate the absolute configuration of the two conformers, this assignment is straight-forward based on the dipole moments. High-level \emph{ab initio} calculations (B3LYP/6-31G^* to MP2/aug-cc-pVTZ) are performed providing error estimates of rotational constants and dipole moments obtained for large molecules by these theoretical methods.Comment: 9 pages, 4 tables, 3 figures (RevTeX

    Ionization of 1D and 3D oriented asymmetric top molecules by intense circularly polarized femtosecond laser pulses

    Get PDF
    We present a combined experimental and theoretical study on strong-field ionization of a three-dimensionally oriented asymmetric top molecule, benzonitrile (C7_7H5_5N), by circularly polarized, nonresonant femtosecond laser pulses. Prior to the interaction with the strong field, the molecules are quantum-state selected using a deflector, and 3-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D-oriented asymmetric top molecules, in particular the suppression of electron emission in nodal planes of molecular orbitals. In the preceding article [Dimitrovski et al., Phys. Rev. A 83, 023405 (2011)] the focus is to understand the strong-field ionization of one-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons.Comment: 12 pages, 9 figure

    Alternating-gradient focusing and deceleration of large molecules

    Get PDF
    Contains fulltext : 99129.pdf (preprint version ) (Open Access
    corecore