77 research outputs found

    The Yeast SWI/SNF Complex Structure and Function: A Dissertation

    Get PDF
    DNA is packaged within the cells\u27 nucleus as a highly compact chromatin structure ranging between 100-400 nm fibers. The organization and alteration of this structure is mandatory in order to arbitrate DNA-mediated processes of the cell, including transcription, DNA replication, recombination and repair. Many different kinds of enzymes modify chromatin components and, in turn, regulate the accessibility of DNA. These multi-subunited enzymes have emerged as key regulators for several processes of the cell. Central to understanding how DNA-mediated processes are regulated is to comprehend the consequences of these modifications of chromatin, which lead to altered states of either activation or inactivation. One class of factors known to modify chromatin structure is the ATP-dependent chromatin remodeling enzymes. This class of enzymes encompasses evolutionarily conserved multi-subunited enzymes, which appear to function by using the energy of ATP hydrolysis to disrupt histone-DNA interactions. The prototype of ATP-dependent chromatin remodelers is the Saccharomyces cerevisiae SWI/SNF complex. The yeast SWI/SNF complex is required for the full functioning of several transcriptional activators and for the expression of a subset of yeast genes, a notable number being inducible and mitotic genes. The purified complex is comprised of the following eleven different polypeptides: Swi2p/Snf2p, Swi1p, Swi3p, Snf5p, Snf6p, Swp73p, Arp7p, Arp9p, Swp82p, Swp29p and Snf11 p. It has been established that a core of homologous subunits (Swi2p, Swi3p, Swp73p, Snf5p and the Arp proteins) is conserved among the SWI/SNF-related complexes from several organisms (yRSC, hSWI/SNF, hRSC, DrosophilaBrahma). However, the functional contribution of these polypeptides in the complexes for altering chromatin structure is largely unknown. In this study, biochemistry is used to examine the structure of the complex and function of individual subunits of the yeast SWI/SNF complex to understand better how these proteins are acting in concert to remodel chromatin. In addition, we examine a role for SWI/SNF complex in the process of DNA replication. The relative stoichiometry of the SWI/SNF complex subunits was determined by in vitrobiochemical studies. Co-immunoprecipitation has demonstrated that there is only one copy of Swi2p/Snf2p per complex. Subsequent radioactive labeling of the purified complex revealed that the complex contains one copy of each subunit per complex with the exception of Swi3p and Snf5p, which are present in two copies per complex. The subunit organization of SWI/SNF complex has been more clearly defined by determining direct subunit-subunit interactions in the complex. The Swi3p component has previously been shown to be critical for complex function in vivo and essential for the integrity of the complex in vitro, and this study demonstrates that Swi3p serves as a scaffolding protein that nucleates SWI/SNF complex assembly. In vitrobinding studies with Swi3p have revealed that Swi3p displays self-association, as well as direct interactions with the Swi2p, Snf5p, Swp73p, Swi1p and Snf6p members of the complex. The direct interactions of the yeast SWI/SNF subunits with transcriptional activators, thought to be important for yeast SWI/SNF targeting, were examined. In vitrobinding assays demonstrate that individual SWI/SNF subunits, Snf5p, Snf6p and Swi1p, and sub-complexes Swi2p/Swi3p and Swp73p/Swi3p can directly interact with specific domains of transcriptional activators of either the Swi5p zinc-finger DBD or VP16 acidic activation domain. This work begins to characterize the functional contribution of individual subunits, and cooperative sub-complexes that are critical for the SWI/SNF complex functional activities. The yeast SWI/SNF complex was investigated for the ability to playa role in DNA replication. Interestingly, plasmid stability assays reveal that minichromosomes that contain DNA replication origin ARS121 is weakened when the SWIISNF complex is non-functional. ARS121\u27s SWI/SNF dependency is overcome by the over-expression of DNA replication regulatory protein, Cdc6p. Thus, this suggests SWI/SNF may either indirectly effect DNA replication by effecting the expression of Cdc6p, or has a redundant function with Cdc6p. In addition, several crippled derivatives of ARS1 acquire SWI/SNF dependence, and it is found that the SWI/SNF complex requires a transcriptional activation domain to enhance ARS1 function. These results reinforce the view that SWI/SNF play a role in two chromatin-mediated processes\u27, transcription and DNA replication

    Knowing about and acting in relation to distant suffering: mind the gap!

    Get PDF
    A report aimed at NGOs and journalists working within the marketing and media coverage of disasters, human rights and development. “If people only knew, then they would act!” The image of a suffering child or the story of a starving mother supposedly should make us care and want to alleviate that suffering and make a change. People know, but they do not necessarily act

    Coincidence of a Novel KCNJ11 Missense Variant R365H With a Paternally Inherited 6q24 Duplication in a Patient With Transient Neonatal Diabetes

    Get PDF
    OBJECTIVE—Neonatal diabetes is a heterogeneous group of disorders with diabetes manifestation in the first 6 months of life. The most common etiology in permanent neonatal diabetes is mutations of the ATP-sensitive K+ channel subunits; in transient neonatal diabetes, chromosome 6q24 abnormalities are the most common cause

    Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism

    Get PDF
    K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2.We thank the Wellcome Trust (076436/Z/05/Z and 081188/A/06/Z), the Royal Society and the European Union (EuroDia, SHM‐CT‐2006‐518513 and EDICT, 201924) for support. FMA is a Royal Society Research Professor. Brittany Zadek was supported by an OXION studentship and Sarah Flanagan by a Sir Graham Wilkins Research Fellowship

    What Works to Improve and Manage Fecal Incontinence in Care Home Residents Living With Dementia? A Realist Synthesis of the Evidence.

    Get PDF
    The prevalence of fecal incontinence (FI) in care homes is estimated to range from 30% to 50%. There is limited evidence of what is effective in the reduction and management of FI in care homes. Using realist synthesis, 6 potential program theories of what should work were identified. These addressed clinician-led support, assessment, and review; the contribution of teaching and support for care home staff on how to reduce and manage FI; addressing the causes and prevention of constipation; how cognitive and physical capacity of the resident affects outcomes; how the potential for recovery, reduction, and management of FI is understood by those involved; and how the care of people living with dementia and FI is integral to the work patterns of the care home and its staff. Dementia was a known risk factor for fecal incontinence (FI), but how it affected uptake of different interventions or the dementia specific continence and toileting skills staff require, were not addressed in the literature. There was a lack of dementia-specific evidence on continence aids. Most care home residents with FI will be doubly incontinent; there is, therefore, limited value in focusing solely on FI or single causes, such as constipation. Medical and nursing support for continence care is an important resource, but it is unhelpful to create a distinction between what is continence care and what is personal or intimate care. Prompted toileting is an approach that may be particularly beneficial for some residents. Valuing the intimate and personal care work unqualified and junior staff provide to people living with dementia and reinforcement of good practice in ways that are meaningful to this workforce are important clinician-led activities. Providing dementia-sensitive continence care within the daily work routines of care homes is key to helping to reduce and manage FI for this population

    Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution

    Get PDF
    Thymus function requires extensive cross-talk between developing T-cells and the thymic epithelium, which consists of cortical and medullary TEC. The transcription factor FOXN1 is the master regulator of TEC differentiation and function, and declining Foxn1 expression with age results in stereotypical thymic involution. Understanding of the dynamics of Foxn1 expression is, however, limited by a lack of single cell resolution data. We have generated a novel reporter of Foxn1 expression, Foxn1G, to monitor changes in Foxn1 expression during embryogenesis and involution. Our data reveal that early differentiation and maturation of cortical and medullary TEC coincides with precise sub-lineage-specific regulation of Foxn1 expression levels. We further show that initiation of thymic involution is associated with reduced cTEC functionality, and proportional expansion of FOXN1-negative TEC in both cortical and medullary sub-lineages. Cortex-specific down-regulation of Foxn1 between 1 and 3 months of age may therefore be a key driver of the early stages of age-related thymic involution

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Proceedings of the Virtual 3rd UK Implementation Science Research Conference : Virtual conference. 16 and 17 July 2020.

    Get PDF

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p
    corecore