834 research outputs found
Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits
Of the over 800 exoplanets detected to date, over half are on non-circular
orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable
stellar heating, which has implications for the planet's atmospheric dynamical
regime. However, little is known about this dynamical regime, and how it may
influence observations. Therefore, we present a systematic study of hot
Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which
couples a three-dimensional general circulation model with a plane-parallel,
two-stream, non-grey radiative transfer model. In our study, we vary the
eccentricity and orbit-average stellar flux over a wide range. We demonstrate
that the eccentric hot Jupiter regime is qualitatively similar to that of
planets on circular orbits; the planets possess a superrotating equatorial jet
and exhibit large day-night temperature variations. We show that these
day-night heating variations induce momentum fluxes equatorward to maintain the
superrotating jet throughout its orbit. As the eccentricity and/or stellar flux
is increased, the superrotating jet strengthens and narrows, due to a smaller
Rossby deformation radius. For a select number of model integrations, we
generate full-orbit lightcurves and find that the timing of transit and
secondary eclipse viewed from Earth with respect to periapse and apoapse can
greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux
can lead or lag secondary eclipse depending on the geometry. For those planets
that have large day-night temperature variations and rapid rotation rates, we
find that the lightcurves exhibit "ringing" as the planet's hottest region
rotates in and out of view from Earth. These results can be used to explain
future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap
Blood volume and orthostatic responses of men and women to a 13-day bedrest
Changes in blood volume during space flight are thought to contribute to decrements in postflight orthostatic function. The purpose of this study was to determine whether gender affects red cell mass and plasma volume during a short exposure to simulated microgravity, and whether gender differences in orthostatic tolerance ensure. Methods: Ten men (31.5 plus or minus 5.2 years, STD) and eleven normally menstruating women (33.3) plus or minus 6.0 STD) underwent 13 days of 6 degree head-down bedrest. Plasma volume (Iodine 125 labeled human serum albumin) and red cell mass (Carbon 51 labeled red blood cells) were measured before bedrest and on bedrest day 13. On the same days, orthostatic tolerance (OT) was determined as the maximal pressure during a presyncopalimited lower body negative pressure test. Results: Plasma volume (PV) and red cell mass (RCM) decreased in both groups with a greater PV decrease (P less than 0.05) in men (6.3 plus or minus 0.7 ml/kg) than in women (4.1 plus or minus 0.6 ml/kg). Decreases in red cell mass were similar (1.7 plus or minus 0.2 ml/kg in men and 1.7 plus or minus 0.2 ml/kg in women). OT was similar for men and women before bedrest (minus 78 plus or minus 6 mmHg in men versus minus 70 plus or minus 4 mmHg in women) and decreased by a similar degree (by an average of 11 mmHg in both groups) after bedrest. The changes in OT did not correlate with changes in plasma volume during bedrest (r(exp 2) = 0.002). Conclusion: Thus, although female hormones may protect PV during bedrest, they do no appear to offer an advantage in terms of loss of orthostatic function
Kepler KOI-13.01 - Detection of beaming and ellipsoidal modulations pointing to a massive hot Jupiter
KOI-13 was presented by the Kepler team as a candidate for having a giant
planet - KOI-13.01, with orbital period of 1.7 d and transit depth of ~0.8%. We
have analyzed the Kepler Q2 data of KOI-13, which was publicly available at the
time of the submission of this paper, and derived the amplitudes of the
beaming, ellipsoidal and reflection modulations: 8.6 +/- 1.1, 66.8 +/- 1.6 and
72.0 +/- 1.5 ppm (parts per million), respectively. After the paper was
submitted, Q3 data were released, so we repeated the analysis with the newly
available light curve. The results of the two quarters were quite similar. From
the amplitude of the beaming modulation we derived a mass of 10 +/- 2 M_Jup for
the secondary, suggesting that KOI-13.01 was a massive planet, with one of the
largest known radii. We also found in the data a periodicity of unknown origin
with a period of 1.0595 d and a peak-to-peak modulation of ~60 ppm. The light
curve of Q3 revealed a few more small-amplitude periodicities with similar
frequencies. It seemed as if the secondary occultation of KOI-13 was slightly
deeper than the reflection peak-to-peak modulation by 16.8 +/- 4.5 ppm. If
real, this small difference was a measure of the thermal emission from the
night side of KOI-13.01. We estimated the effective temperature to be 2600 +/-
150 K, using a simplistic black-body emissivity approximation. We then derived
the planetary geometrical and Bond albedos as a function of the day-side
temperature. Our analysis suggested that the Bond albedo of KOI-13.01 might be
substantially larger than the geometrical albedo.Comment: 15 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
Self-Consistent Model Atmospheres and the Cooling of the Solar System's Giant Planets
We compute grids of radiative-convective model atmospheres for Jupiter,
Saturn, Uranus, and Neptune over a range of intrinsic fluxes and surface
gravities. The atmosphere grids serve as an upper boundary condition for models
of the thermal evolution of the planets. Unlike previous work, we customize
these grids for the specific properties of each planet, including the
appropriate chemical abundances and incident fluxes as a function of solar
system age. Using these grids, we compute new models of the thermal evolution
of the major planets in an attempt to match their measured luminosities at
their known ages. Compared to previous work, we find longer cooling times,
predominantly due to higher atmospheric opacity at young ages. For all planets,
we employ simple "standard" cooling models that feature adiabatic temperature
gradients in the interior H/He and water layers, and an initially hot starting
point for the calculation of subsequent cooling. For Jupiter we find a model
cooling age 10% longer than previous work, a modest quantitative difference.
This may indicate that the hydrogen equation of state used here overestimates
the temperatures in the deep interior of the planet. For Saturn we find a model
cooling age 20% longer than previous work. However, an additional energy
source, such as that due to helium phase separation, is still clearly needed.
For Neptune, unlike in work from the 1980s and 1990s, we match the measured
Teff of the planet with a model that also matches the planet's current gravity
field. This is predominantly due to advances in the equation of state of water.
This may indicate that the planet possesses no barriers to efficient convection
in its deep interior. However, for Uranus, our models exacerbate the well-known
problem that Uranus is far cooler than calculations predict, which could imply
strong barriers to interior convective cooling.Comment: 45 pages, Accepted to Ap
Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity
We examine the spectra and infrared colors of the cool methane-dominated
atmospheres at Teff < 1400 K expected for young gas giant planets. We couple
these spectral calculations to an updated version of the Marley et al. (2007)
giant planet thermal evolution models that include formation by core
accretion-gas capture. These relatively cool "young Jupiters" can be 1-6
magnitudes fainter than predicted by standard cooling tracks that include a
traditional initial condition, which may provide a diagnostic of formation. If
correct, this would make true Jupiter-like planets much more difficult to
detect at young ages than previously thought. Since Jupiter and Saturn are of
distinctly super-solar composition, we examine emitted spectra for model
planets at both solar metallicity and a metallicity of 5 times solar. These
metal-enhanced young Jupiters have lower pressure photospheres than field brown
dwarfs of the same effective temperatures arising from both lower surface
gravities and enhanced atmospheric opacity. We highlight several diagnostics
for enhanced metallicity. A stronger CO absorption band at 4.5 m for the
warmest objects is predicted. At all temperatures, enhanced flux in band is
expected due to reduced collisional induced absorption by H. This leads to
correspondingly redder near infrared colors, which are redder than solar
metallicity models with the same surface gravity by up to 0.7 in and 1.5
in . Molecular absorption band depths increase as well, most significantly
for the coolest objects. We also qualitatively assess the changes to emitted
spectra due to nonequilibrium chemistry.Comment: Accepted to ApJ. Most figures in colo
z'-band Ground-Based Detection of the Secondary Eclipse of WASP-19b
We present the ground-based detection of the secondary eclipse of the
transiting exoplanet WASP-19b. The observations were made in the Sloan z'-band
using the ULTRACAM triple-beam CCD camera mounted on the NTT. The measurement
shows a 0.088\pm0.019% eclipse depth, matching previous predictions based on H-
and K-band measurements. We discuss in detail our approach to the removal of
errors arising due to systematics in the data set, in addition to fitting a
model transit to our data. This fit returns an eclipse centre, T0, of
2455578.7676 HJD, consistent with a circular orbit. Our measurement of the
secondary eclipse depth is also compared to model atmospheres of WASP-19b, and
is found to be consistent with previous measurements at longer wavelengths for
the model atmospheres we investigated.Comment: 20 pages, 10 figures. Published in the ApJ Supplement serie
Frontiers of the physics of dense plasmas and planetary interiors: experiments, theory, applications
Recent developments of dynamic x-ray characterization experiments of dense
matter are reviewed, with particular emphasis on conditions relevant to
interiors of terrestrial and gas giant planets. These studies include
characterization of compressed states of matter in light elements by x-ray
scattering and imaging of shocked iron by radiography. Several applications of
this work are examined. These include the structure of massive "Super Earth"
terrestrial planets around other stars, the 40 known extrasolar gas giants with
measured masses and radii, and Jupiter itself, which serves as the benchmark
for giant planets.Comment: Accepted to Physics of Plasmas special issue. Review from
HEDP/HEDLA-08, April 12-15, 200
On planetary mass determination in the case of super-Earths orbiting active stars. The case of the CoRoT-7 system
This investigation uses the excellent HARPS radial velocity measurements of
CoRoT-7 to re-determine the planet masses and to explore techniques able to
determine mass and elements of planets discovered around active stars when the
relative variation of the radial velocity due to the star activity cannot be
considered as just noise and can exceed the variation due to the planets. The
main technique used here is a self-consistent version of the high-pass filter
used by Queloz et al. (2009) in the first mass determination of CoRoT-7b and
CoRoT-7c. The results are compared to those given by two alternative
techniques: (1) The approach proposed by Hatzes et al. (2010) using only those
nights in which 2 or 3 observations were done; (2) A pure Fourier analysis. In
all cases, the eccentricities are taken equal to zero as indicated by the study
of the tidal evolution of the system; the periods are also kept fixed at the
values given by Queloz et al. Only the observations done in the time interval
BJD 2,454,847 - 873 are used because they include many nights with multiple
observations; otherwise it is not possible to separate the effects of the
rotation fourth harmonic (5.91d = Prot/4) from the alias of the orbital period
of CoRoT-7b (0.853585 d). The results of the various approaches are combined to
give for the planet masses the values 8.0 \pm 1.2 MEarth for CoRoT-7b and 13.6
\pm 1.4 MEarth for CoRoT 7c. An estimation of the variation of the radial
velocity of the star due to its activity is also given.The results obtained
with 3 different approaches agree to give masses larger than those in previous
determinations. From the existing internal structure models they indicate that
CoRoT-7b is a much denser super-Earth. The bulk density is 11 \pm 3.5 g.cm-3 .
CoRoT-7b may be rocky with a large iron core.Comment: 12 pages, 11 figure
A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b
Context. GJ 436b is one of the few transiting warm Neptunes for which a
detailed characterisation of the atmosphere is possible, whereas its
non-negligible orbital eccentricity calls for further investigation.
Independent analyses of several individual datasets obtained with Spitzer have
led to contradicting results attributed to the different techniques used to
treat the instrumental effects. Aims. We aim at investigating these previous
controversial results and developing our knowledge of the system based on the
full Spitzer photometry dataset combined with new Doppler measurements obtained
with the HARPS spectrograph. We also want to search for additional planets.
Methods. We optimise aperture photometry techniques and the photometric
deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer
photometry spanning wavelengths from 3-24 {\mu}m. Adding the high precision
HARPS radial velocity data, we undertake a Bayesian global analysis of the
system considering both instrumental and stellar effects on the flux variation.
Results. We present a refined radius estimate of RP=4.10 +/- 0.16 R_Earth, mass
MP=25.4 +/- 2.1 M_Earth and eccentricity e= 0.162 +/- 0.004 for GJ 436b. Our
measured transit depths remain constant in time and wavelength, in disagreement
with the results of previous studies. In addition, we find that the
post-occultation flare-like structure at 3.6 {\mu}m that led to divergent
results on the occultation depth measurement is spurious. We obtain occultation
depths at 3.6, 5.8, and 8.0 {\mu}m that are shallower than in previous works,
in particular at 3.6 {\mu}m. However, these depths still appear consistent with
a metal-rich atmosphere depleted in methane and enhanced in CO/CO2, although
perhaps less than previously thought. We find no evidence for a potential
planetary companion, stellar activity, nor for a stellar spin-orbit
misalignment. [ABRIDGED]Comment: 25 pages, 26 figures, 8 tables, accepted for publication in A&
- …