322 research outputs found

    FaCE: a tool for Three Body Faddeev calculations with core excitation

    Full text link
    FaCE is a self contained programme, with namelist input, that solves the three body Faddeev equations. It enables the inclusion of excitation of one of the three bodies, whilst the other two remain inert. It is particularly useful for obtaining the binding energies and bound state structure compositions of light exotic nuclei treated as three-body systems, given the three effective two body interactions. A large variety of forms for these interactions may be defined, and supersymmetric transformations of these potentials may be calculated whenever two body states need to be removed due to Pauli blocking.Comment: 19 pg, 3 figs, program available for download from ftp://ftp.ph.surrey.ac.uk/pub/thompson/face

    Single-neutron transfer from 11Be gs via the (p,d) reaction with a radioactive beam

    Full text link
    The 11Be(p,d)10Be reaction has been performed in inverse kinematics with a radioactive 11Be beam of E/A = 35.3 MeV. Angular distributions for the 0+ ground state, the 2+, 3.37 MeV state and the multiplet of states around 6 MeV in 10Be were measured at angles up to 16 deg CM by detecting the 10Be in a dispersion-matched spectrometer and the coincident deuterons in a silicon array. Distorted wave and coupled-channels calculations have been performed to investigate the amount of 2+ core excitation in 11Be gs. The use of "realistic" 11Be wave functions is emphasised and bound state form factors have been obtained by solving the particle-vibration coupling equations. This calculation gives a dominant 2s component in the 11Be gs wave function with a 16% [2+ x 1d] core excitation admixture. Cross sections calculated with these form factors are in good agreement with the present data. The Separation Energy prescription for the bound state wave function also gives satisfactory fits to the data, but leads to a significantly larger [2 x 1d] component in 11Be gs.Comment: 39 pages, 12 figures. Accepted for publication in Nuclear Physics A. Added minor corrections made in proof to pages 26 and 3

    Wireless Remote Monitoring of Glucose Using a Functionalized ZnO Nanowire Arrays Based Sensor

    Get PDF
    This paper presents a prototype wireless remote glucose monitoring system interfaced with a ZnO nanowire arrays-based glucose sensor, glucose oxidase enzyme immobilized onto ZnO nanowires in conjunction with a Nafion® membrane coating, which can be effectively applied for the monitoring of glucose levels in diabetics. Global System for Mobile Communications (GSM) services like General Packet Radio Service (GPRS) and Short Message Service (SMS) have been proven to be logical and cost effective methods for gathering data from remote locations. A communication protocol that facilitates remote data collection using SMS has been utilized for monitoring a patient’s sugar levels. In this study, we demonstrate the remote monitoring of the glucose levels with existing GPRS/GSM network infra-structures using our proposed functionalized ZnO nanowire arrays sensors integrated with standard readily available mobile phones. The data can be used for centralized monitoring and other purposes. Such applications can reduce health care costs and allow caregivers to monitor and support to their patients remotely, especially those located in rural areas

    Nuclear structure and reaction studies at SPIRAL

    Get PDF
    The SPIRAL facility at GANIL, operational since 2001, is described briefly. The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams ranging from He to Kr and the instrumentation specially developed for their exploitation are presented. Results of these studies, using both direct and compound processes, addressing various questions related to the existence of exotic states of nuclear matter, evolution of new "magic numbers", tunnelling of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites and characterization of the continuum are discussed. The future prospects for the facility and the path towards SPIRAL2, a next generation ISOL facility, are also briefly presented.Comment: 48 pages, 27 figures. Accepted for publication in Journal of Physics

    Evaluation of a standard provision versus an autonomy promotive exercise referral programme: rationale and study design

    Get PDF
    Background The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT) -based exercise referral consultation. Methods/Design Design: An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. Participants: 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n=7) or to the SDT-based intervention (n=6). Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. Discussion This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. Trial registration The trial is registered as Current Controlled trials ISRCTN07682833

    Ecological and Evolutionary Benefits of Temperate Phage: What Does or Doesn't Kill You Makes You Stronger

    Get PDF
    Infection by a temperate phage can lead to death of the bacterial cell, but sometimes these phages integrate into the bacterial chromosome, offering the potential for a more long-lasting relationship to be established. Here we define three major ecological and evolutionary benefits of temperate phage for bacteria: as agents of horizontal gene transfer (HGT), as sources of genetic variation for evolutionary innovation, and as weapons of bacterial competition. We suggest that a coevolutionary perspective is required to understand the roles of temperate phages in bacterial populations

    Single-cell discovery and multiomic characterization of therapeutic targets in multiple myeloma

    Get PDF
    UNLABELLED: Multiple myeloma (MM) is a highly refractory hematologic cancer. Targeted immunotherapy has shown promise in MM but remains hindered by the challenge of identifying specific yet broadly representative tumor markers. We analyzed 53 bone marrow (BM) aspirates from 41 MM patients using an unbiased, high-throughput pipeline for therapeutic target discovery via single-cell transcriptomic profiling, yielding 38 MM marker genes encoding cell-surface proteins and 15 encoding intracellular proteins. Of these, 20 candidate genes were highlighted that are not yet under clinical study, 11 of which were previously uncharacterized as therapeutic targets. The findings were cross-validated using bulk RNA sequencing, flow cytometry, and proteomic mass spectrometry of MM cell lines and patient BM, demonstrating high overall concordance across data types. Independent discovery using bulk RNA sequencing reiterated top candidates, further affirming the ability of single-cell transcriptomics to accurately capture marker expression despite limitations in sample size or sequencing depth. Target dynamics and heterogeneity were further examined using both transcriptomic and immuno-imaging methods. In summary, this study presents a robust and broadly applicable strategy for identifying tumor markers to better inform the development of targeted cancer therapy. SIGNIFICANCE: Single-cell transcriptomic profiling and multiomic cross-validation to uncover therapeutic targets identifies 38 myeloma marker genes, including 11 transcribing surface proteins with previously uncharacterized potential for targeted antitumor therapy

    High-frequency vector harmonic mode locking driven by acoustic resonances

    Get PDF
    A controllable passive harmonic mode locking (HML) in an erbium-doped fiber laser with a soliton pulse shaping using a single-wall carbon nanotube has been experimentally demonstrated. By increasing the pump power and adjusting the in-cavity polarization controller, we reached the 51st-order harmonic (902 MHz) having the output power of 37 mW. We attribute the observed high-frequency HML to the electrostriction effect caused by periodic pulses and leading to excitation of the radial and torsional-radial acoustic modes in the transverse section of the laser. The exited acoustic modes play the role of the bandpass filter, which stabilizes the high-frequency HML regime

    Pedometer use and self-determined motivation for walking in a cardiac telerehabilitation program: a qualitative study

    Full text link
    BACKGROUND: Exercise-based cardiac rehabilitation reduces morbidity and mortality. Walking is a convenient activity suitable for people with cardiac disease. Pedometers count steps, measure walking activity and motivate people to increase physical activity. In this study, patients participating in cardiac telerehabilitation were provided with a pedometer to support motivation for physical activity with the purpose of exploring pedometer use and self-determined motivation for walking experienced by patients and health professionals during a cardiac telerehabilitation program. METHODS: A qualitative research design consisting of observations, individual interviews and patient documents made the basis for a content analysis. Data was analysed deductively using Self Determination Theory as a frame for analysis and discussion, focusing on the psychological needs of autonomy, competence and relatedness. Twelve cardiac patients, 11 health professionals, 6 physiotherapists and 5 registered nurses were included. RESULTS: The pedometer offered independence from standardised rehabilitation since the pedometer supported tailoring, individualised walking activity based on the patient’s choice. This led to an increased autonomy. The patients felt consciously aware of health benefits of walking, and the pedometer provided feedback on walking activity leading to an increased competence to achieve goals for steps. Finally, the pedometer supported relatedness with others. The health professionals’ surveillance of patients’ steps, made the patients feel observed, yet supported, furthermore, their next of kin appeared to be supportive as walking partners. CONCLUSION: Cardiac patients’ motivation for walking was evident due to pedometer use. Even though not all aspects of motivation were autonomous and self determined, the patients felt motivated for walking. The visible steps and continuous monitoring of own walking activity made it possible for each individual patient to choose their desired kind of activity and perform ongoing adjustments of walking activity. The immediate feedback on step activity and the expectations of health benefits resulted in motivation for walking. Finally, pedometer supported walking made surveillance possible, giving the patients a feeling of being looked after and supported. TRIAL REGISTRATION: Current study is a part of The Teledi@log project

    Erythropoietin Ameliorates Rat Experimental Autoimmune Neuritis by Inducing Transforming Growth Factor-Beta in Macrophages

    Get PDF
    Erythropoietin (EPO) is a pleiotropic cytokine originally identified for its role in erythropoiesis. In addition, in various preclinical models EPO exhibited protective activity against tissue injury. There is an urgent need for potent treatments of autoimmune driven disorders of the peripheral nervous system (PNS), such as the Guillain-Barré syndrome (GBS), a disabling autoimmune disease associated with relevant morbidity and mortality. To test the therapeutic potential of EPO in experimental autoimmune neuritis (EAN) - an animal model of human GBS – immunological and clinical effects were investigated in a preventive and a therapeutic paradigm. Treatment with EPO reduced clinical disease severity and if given therapeutically also shortened the recovery phase of EAN. Clinical findings were mirrored by decreased inflammation within the peripheral nerve, and myelin was well maintained in treated animals. In contrast, EPO increased the number of macrophages especially in later stages of the experimental disease phase. Furthermore, the anti-inflammatory cytokine transforming growth factor (TGF)-beta was upregulated in the treated cohorts. In vitro experiments revealed less proliferation of T cells in the presence of EPO and TGF-beta was moderately induced, while the secretion of other cytokines was almost not altered by EPO. Our data suggest that EPO revealed its beneficial properties by the induction of beneficial macrophages and the modulation of the immune system towards anti-inflammatory responses in the PNS. Further studies are warranted to elaborate the clinical usefulness of EPO for treating immune-mediated neuropathies in affected patients
    • …
    corecore