27 research outputs found

    Pulmonary Epithelial Integrity in Children: Relationship to Ambient Ozone Exposure and Swimming Pool Attendance

    Get PDF
    Airway irritants such as ozone are known to impair lung function and induce airway inflammation. Clara cell protein (CC16) is a small anti-inflammatory protein secreted by the nonciliated bronchiolar Clara cells. CC16 in serum has been proposed as a noninvasive and sensitive marker of lung epithelial injury. In this study, we used lung function and serum CC16 concentration to examine the pulmonary responses to ambient O(3) exposure and swimming pool attendance. The measurements were made on 57 children 10–11 years of age before and after outdoor exercise for 2 hr. Individual O(3) exposure was estimated as the total exposure dose between 0700 hr until the second blood sample was obtained (mean O(3) concentration/m(3) × hours). The maximal 1-hr value was 118 μg/m(3) (59 ppb), and the individual exposure dose ranged between 352 and 914 μg/m(3)hr. These O(3) levels did not cause any significant changes in mean serum CC16 concentrations before or after outdoor exercise, nor was any decrease in lung function detected. However, children who regularly visited chlorinated indoor swimming pools had significantly lower CC16 levels in serum than did nonswimming children both before and after exercise (respectively, 57 ± 2.4 and 53 ± 1.7 μg/L vs. 8.2 ± 2.8 and 8.0 ± 2.6 μg/L; p < 0.002). These results indicate that repeated exposure to chlorination by-products in the air of indoor swimming pools has adverse effects on the Clara cell function in children. A possible relation between such damage to Clara cells and pulmonary morbidity (e.g., asthma) should be further investigated

    A Randomized Phase II/III Study of Naptumomab Estafenatox + IFNα versus IFNα in Renal Cell Carcinoma: Final Analysis with Baseline Biomarker Subgroup and Trend Analysis

    Get PDF
    Purpose: To prospectively determine the efficacy of naptumomab estafenatox (Nap) þ IFNa versus IFN in metastatic renal cell carcinoma (RCC). Experimental Design: In a randomized, open-label, multicenter, phase II/III study, 513 patients with RCC received Nap (15 mg/ kg i. v. in three cycles of four once-daily injections) + IFN (9 MU s. c. three times weekly), or the same regimen of IFN monotherapy. The primary endpoint was overall survival (OS). Results: This phase II/III study did notmeetits primary endpoint. Median OS/PFS for Nap + IFN patients was 17.1/5.8 months versus 17.5/5.8 months for the patients receiving IFN alone (P = 0.56; HR, 1.08/P = 0.41; HR, 0.92). Post hoc exploratory subgroup and trend analysis revealed that the baseline plasma concentrations of antiSEA/E-120 (anti-Nap antibodies) for drug exposure and IL6 for immune status could be used as predictive biomarkers. A subgroup of patients (SG; n = 130) having concentrations below median of anti-SEA/E-120 and IL6 benefitted greatly from the addition of Nap. In SG, median OS/PFS for the patients treated with Nap þ IFN was 63.3/13.7 months versus 31.1/5.8 months for the patients receiving IFN alone (P = 0.02; HR, 0.59/P = 0.02; HR, 0.62). Addition of Nap to IFN showed predicted and transient immune related AEs and the treatment had an acceptable safety profile. Conclusions: The study did not meet its primary endpoint. Nap + IFN has an acceptable safety profile, and results from post hoc subgroup analyses showed that the treatment might improve OS/PFS in a baseline biomarker-defined RCC patient subgroup. The results warrant further studies with Nap in this subgroup

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Early detection of type 2 diabetes in socioeconomically disadvantaged areas in Stockholm - comparing reach of community and facility-based screening

    No full text
    Background Type 2 diabetes and its high-risk stage, prediabetes, are often undiagnosed. Early detection of these conditions is of importance to avoid organ complications due to the metabolic disturbances associated with diabetes. Diabetes screening can detect persons unaware of diabetes risk and the elevated glucose levels can potentially be reversed through lifestyle modification and medication. There are mainly two approaches to diabetes screening: opportunistic facility-based screening at health facilities and community screening. Objective To determine the difference in population reach and participant characteristics between community- and facility-based screening for detection of type 2 diabetes and persons at high risk of developing diabetes. Methods Finnish diabetes risk score (FINDRISC) is a risk assessment tool used by two diabetes projects to conduct community- and facility-based screenings in disadvantaged suburbs of Stockholm. In this study, descriptive and limited inferential statistics were carried out analyzing data from 2,564 FINDRISC forms from four study areas. Community- and facility-based screening was compared in terms of participant characteristics and with population data from the respective areas to determine their reach. Results Our study found that persons born in Africa and Asia were reached through community screening to a higher extent than with facility-based screening, while persons born in Sweden and other European countries were reached more often by facility-based screening. Also, younger persons were reached more frequently through community screening compared with facility-based screening. Both types of screening reached more women than men. Conclusion Community-based screening and facility-based screening were complementary methods in reaching different population groups at high risk of developing type 2 diabetes. Community screening in particular reached more hard-to-reach groups with unfavorable risk profiles, making it a critical strategy for T2D prevention. More men should be recruited to intervention studies and screening initiatives to achieve a gender balance

    CMOS-Integrated Si/SiGe Quantum-Well Infrared Microbolometer Focal Plane Arrays Manufactured With Very Large-Scale Heterogeneous 3-D Integration

    No full text
    We demonstrate infrared focal plane arrays utilizing monocrystalline silicon/silicon-germanium (Si/SiGe) quantum-well microbolometers that are heterogeneously integrated on top of CMOS-based electronic read-out integrated circuit substrates. The microbolometers are designed to detect light in the long wavelength infrared (LWIR) range from 8 to 14 mu m and are arranged in focal plane arrays consisting of 384 x 288 microbolometer pixels with a pixel pitch of 25 mu m x 25 mu m. Focal plane arrays with two different microbolometer designs have been implemented. The first is a conventional single-layer microbolometer design and the second is an umbrella design in which the microbolometer legs are placed underneath the microbolometer membrane to achieve an improved pixel fill-factor. The infrared focal plane arrays are vacuum packaged using a CMOS compatible wafer bonding and sealing process. The demonstrated heterogeneous 3-D integration and packaging processes are implemented atwafer-level and enable independent optimization of the CMOS-based integrated circuits and the microbolometer materials. All manufacturing is done using standard semiconductor and MEMS processes, thus offering a generic approach for integrating CMOS-electronics with complex miniaturized transducer elements.QC 20141113</p

    Treatment with a beta-2-adrenoceptor agonist stimulates glucose uptake in skeletal muscle and improves glucose homeostasis, insulin resistance and hepatic steatosis in mice with diet-induced obesity

    No full text
    Aims/hypothesis Chronic stimulation of beta(2)-adrenoceptors, opposite to acute treatment, was reported to reduce blood glucose levels, as well as to improve glucose and insulin tolerance in rodent models of diabetes by essentially unknown mechanisms. We recently described a novel pathway that mediates glucose uptake in skeletal muscle cells via stimulation of beta(2)-adrenoceptors. In the current study we further explored the potential therapeutic relevance of beta(2)-adrenoceptor stimulation to improve glucose homeostasis and the mechanisms responsible for the effect. Methods C57Bl/6N mice with diet-induced obesity were treated both acutely and for up to 42 days with a wide range of clenbuterol dosages and treatment durations. Glucose homeostasis was assessed by glucose tolerance test. We also measured in vivo glucose uptake in skeletal muscle, insulin sensitivity by insulin tolerance test, plasma insulin levels, hepatic lipids and glycogen. Results Consistent with previous findings, acute clenbuterol administration increased blood glucose and insulin levels. However, already after 4 days of treatment, beneficial effects of clenbuterol were manifested in glucose homeostasis (32% improvement of glucose tolerance after 4 days of treatment,p <0.01) and these effects persisted up to 42 days of treatment. These favourable metabolic effects could be achieved with doses as low as 0.025 mg kg(-1) day(-1)(40 times lower than previously studied). Mechanistically, these effects were not due to increased insulin levels, but clenbuterol enhanced glucose uptake in skeletal muscle in vivo both acutely in lean mice (by 64%,p <0.001) as well as during chronic treatment in diet-induced obese mice (by 74%,p <0.001). Notably, prolonged treatment with low-dose clenbuterol improved whole-body insulin sensitivity (glucose disposal rate after insulin injection increased up to 1.38 +/- 0.31%/min in comparison with 0.15 +/- 0.36%/min in control mice,p <0.05) and drastically reduced hepatic steatosis (by 40%,p <0.01) and glycogen (by 23%,p <0.05). Conclusions/interpretation Clenbuterol improved glucose tolerance after 4 days of treatment and these effects were maintained for up to 42 days. Effects were achieved with doses in a clinically relevant microgram range. Mechanistically, prolonged treatment with a low dose of clenbuterol improved glucose homeostasis in insulin resistant mice, most likely by stimulating glucose uptake in skeletal muscle and improving whole-body insulin sensitivity as well as by reducing hepatic lipids and glycogen. We conclude that selective beta(2)-adrenergic agonists might be an attractive potential treatment for type 2 diabetes. This remains to be confirmed in humans. Graphical abstrac
    corecore