35 research outputs found

    Determinants of workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry

    Get PDF
    Atmospheric plasma spraying (APS) is a frequently used technique to produce enhanced-property coatings for different materials in the ceramic industry. This work aimed to characterise and quantify the impact of APS on workplace exposure to airborne particles, with a focus on ultrafine particles (UFPs, <100 nm) and nanoparticles (<50 nm). Particle number, mass concentrations, alveolar lung deposited surface area concentration, and size distributions, in the range 10 nm – 20 μm were simultaneously monitored at the emission source, in the worker breathing zone, and in outdoor air. Different input materials (known as feedstock) were tested: (a) micro-sized powders, and (b) suspensions containing submicron- or nano-sized particles. Results evidenced significant UFP emissions (up to 3.3x106/cm3) inside the projection chamber, which impacted exposure in the breathing zone outside the projection chamber (up to 8.3x105/cm3). Environmental release of UFPs was also detected and quantified (3.9x105/cm330 ). Engineered nanoparticle (ENP) release to workplace air was also evidenced by TEM microscopy. UFP emissions were detected during the application of both micro-sized powder and suspensions containing submicron- or nano-sized particles, thus suggesting that emissions were process- (and not material-) dependent. An effective risk prevention protocol was implemented, which resulted in a reduction of worker UFP exposure in the breathing zone. These findings evidence the potential risk of occupational exposure to UFPs during atmospheric plasma spraying, and raise the need for further research on UFP formation mechanisms in high-energy industrial processes

    Genomic screening of allelic and genotypic transmission ratio distortion in horse

    Get PDF
    The phenomenon in which the expected Mendelian inheritance is altered is known as transmission ratio distortion (TRD). The TRD analysis relies on the study of the transmission of one of the two alleles from a heterozygous parent to the offspring. These distortions are due to biological mechanisms affecting gametogenesis, embryo development and/or postnatal viability, among others. In this study, TRD phenomenon was characterized in horses using SNP-by-SNP model by TRDscan v.2.0 software. A total of 1,041 Pura Raza Español breed horses were genotyped with 554,634 SNPs. Among them, 277 horses genotyped in trios (stallion-mare-offspring) were used to perform the TRD analysis. Our results revealed 140 and 42 SNPs with allelic and genotypic patterns, respectively. Among them, 63 displayed stallion-TRD and 41 exhibited mare-TRD, while 36 SNPs showed overall TRD. In addition, 42 SNPs exhibited heterosis pattern. Functional analyses revealed that the annotated genes located within the TRD regions identified were associated with biological processes and molecular functions related to spermatogenesis, oocyte division, embryonic development, and hormonal activity. A total of 10 functional candidate genes related to fertility were found. To our knowledge, this is the most extensive study performed to evaluate the presence of alleles and functional candidate genes with transmission ratio distortion affecting reproductive performance in the domestic horse.Fil: Laseca, Nora. Universidad de Córdoba; EspañaFil: Cánovas, Ángela. University of Guelph; CanadáFil: Valera, Mercedes. Universidad de Sevilla; EspañaFil: Id Lahoucine, Samir. Scotland’s Rural College; Reino UnidoFil: Perdomo González, Davinia Isabel. Universidad de Sevilla; EspañaFil: Fonseca, Pablo A. S.. Universidad de León; EspañaFil: Demyda-peyrás, Sebastian. Universidad de Córdoba; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Molina, Antonio. Universidad de Córdoba; Españ

    Unravelling the genetics of non-random fertilization associated with gametic incompatibility

    Get PDF
    In the dairy industry, mate allocation is dependent on the producer’s breeding goals and the parents’ breeding values. The probability of pregnancy differs among sire-dam combinations, and the compatibility of a pair may vary due to the combination of gametic haplotypes. Under the hypothesis that incomplete incompatibility would reduce the odds of fertilization, and complete incompatibility would lead to a non-fertilizing or lethal combination, deviation from Mendelian inheritance expectations would be observed for incompatible pairs. By adding an interaction to a transmission ratio distortion (TRD) model, which detects departure from the Mendelian expectations, genomic regions linked to gametic incompatibility can be identified. This study aimed to determine the genetic background of gametic incompatibility in Holstein cattle. A total of 283,817 genotyped Holstein trios were used in a TRD analysis, resulting in 422 significant regions, which contained 2075 positional genes further investigated for network, overrepresentation, and guilt-by-association analyses. The identified biological pathways were associated with immunology and cellular communication and a total of 16 functional candidate genes were identified. Further investigation of gametic incompatibility will provide opportunities to improve mate allocation for the dairy cattle industry

    Juego de cartas “Familias Falconer”: resultados de una experiencia de gamificación en la asignatura de Cría y Mejora Animal.

    Get PDF
    Dadas las dificultades identificadas por parte de los profesores del perfil de Genética del Dpto. de Producción Animal de la Universidad de León, integrantes a su vez del Grupo de Innovación Docente “VetGeneULE” (GI052), en relación al aprendizaje de los conceptos de Genética Cuantitativa en diferentes asignaturas relacionadas con la Mejora Genética Animal, se ha diseñado un juego de cartas didácticas para reforzar la comprensión de dichos conceptos. En base a un estudio piloto realizado previamente en un número reducido de estudiantes del Grado de Ingeniería Agrícola, se presenta aquí el proceso de desarrollo de la versión definitiva del juego de cartas, denominado “Familias Falconer” y la evaluación de una primera experiencia de gamificación desarrollada con un grupo de estudiantes de mayor tamaño de la asignatura de Cría y Mejora Animal del Grado en Veterinaria de la Universidad de León

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams
    corecore