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Abstract 16 

 17 

Atmospheric plasma spraying (APS) is a frequently used technique to produce 18 

enhanced-property coatings for different materials in the ceramic industry. This work 19 

aimed to characterise and quantify the impact of APS on workplace exposure to 20 

airborne particles, with a focus on ultrafine particles (UFPs, <100 nm) and 21 

nanoparticles (<50 nm). Particle number, mass concentrations, alveolar lung deposited 22 

surface area concentration, and size distributions, in the range 10 nm – 20 µm were 23 

simultaneously monitored at the emission source, in the worker breathing zone, and in 24 

outdoor air. Different input materials (known as feedstock) were tested: (a) micro-sized 25 

powders, and (b) suspensions containing submicron- or nano-sized particles. Results 26 

evidenced significant UFP emissions (up to 3.3x106/cm3) inside the projection 27 

chamber, which impacted exposure in the breathing zone outside the projection 28 

chamber (up to 8.3x105/cm3). Environmental release of UFPs was also detected and 29 

quantified (3.9x105/cm3). Engineered nanoparticle (ENP) release to workplace air was 30 

also evidenced by TEM microscopy. UFP emissions were detected during the 31 

application of both micro-sized powder and suspensions containing submicron- or 32 

nano-sized particles, thus suggesting that emissions were process- (and not material-) 33 

dependent. An effective risk prevention protocol was implemented, which resulted in a 34 

reduction of worker UFP exposure in the breathing zone. These findings evidence the 35 

potential risk of occupational exposure to UFPs during atmospheric plasma spraying, 36 

and raise the need for further research on UFP formation mechanisms in high-energy 37 

industrial processes. 38 
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1. Introduction 46 

Thermal spraying in general, and atmospheric plasma spraying (APS) in particular, are 47 

frequently used technologies to produce high-performance surfaces required in 48 

industrial processes. APS is used to deposit different coatings on a number of surfaces 49 

in order to achieve enhanced properties such as wear, corrosion, electrical insulation or 50 

heat resistance, while maintaining the structural properties of the underlying material 51 

(Fauchais et al., 2014; Rosso et al., 2001; Stöver and Funke, 1999). Atmospheric 52 

plasma spraying is commonly employed because of its versatility and wide applicability 53 

in diverse technologies such as coating of stainless steel components (e.g., pistons) to 54 

prevent wear and corrosion in pump applications, coating of metal structures (e.g., 55 

turbine engines and blades) to obtain ceramic thermal barriers in aero-spatial and 56 

energy-generation applications, or rapid manufacturing of metal molds without 57 

limitation of pattern size, among others (Carpio et al., 2015a,b,c; Huang et al., 2016; 58 

Khor and Gu, 2000; Montanari et al., 2002; Olding et al., 2001; Tamulevičius and 59 

Dargis, 1998; Zhang et al., 2001).  60 

 61 

During thermal spray deposition, the feedstock (starting material) is molten (or partially 62 

molten) and accelerated to impact onto the substrate surface, where the deposited 63 

material is cooled forming the coating. In the case of APS, the energetic source is a 64 

thermal plasma which achieves high impact velocities and very high temperatures (> 65 

10000K). Plasma spraying can provide coatings with varying thickness over a large 66 

area at high deposition rate, which makes it advantageous with regard to other coating 67 

processes such as physical or chemical vapour deposition (Papyrin et al., 2007; 68 

Pawlowski, 1995). Another advantage is that the coated surface does not heat up 69 

significantly, allowing the coating of flammable substances. Furthermore, the high 70 

energy density and high temperature of plasma flow facilitate the deposition of coatings 71 

of refractory materials which are difficult to melt using other conventional thermal 72 

spraying techniques (Fauchais et al., 2014). Coating materials available for plasma 73 

spraying include metals, alloys, ceramics, plastics and composites, which are typically 74 

fed in micro-sized powder form. The use of nanoparticles (<50 nm, NPs) as a 75 

feedstock can improve the properties of the coatings (Pawlowski, 2009). However, 76 

nanoparticles cannot be injected directly inside the plasma plume because of their poor 77 

flowability and low specific weight. For this reason, the injection of suspensions 78 

(containing submicron- or nano-sized particles) instead of micro-sized powders has 79 

been implemented in recent years. This modification is named suspension plasma 80 

spraying (SPS) and the phenomena (fusion, evaporation, particle trajectory, etc.) which 81 

occur inside the plasma plume change significantly with respect to the APS technique. 82 

(Pawlowski, 2009). 83 

 84 

High-energy industrial processes similar to plasma spraying are known to release NPs 85 

and ultrafine (<100 nm, UFP) particles into workplace air (Fonseca et al., 2015, 2016a). 86 

These particles are usually referred to as process-generated particles (Broekhuizen et 87 

al., 2012), and they have the potential to impact indoor air quality, workplace exposure 88 

and human health (Li et al., 2016). Studies have shown that one thermal spraying 89 

technique similar to plasma spraying, high velocity oxy-fuel (HVOF) spraying, may 90 

even generate emissions of large dust particles above 10 µm in size (Huang et al., 91 

2016). In addition to process-generated particles, workplace exposure may be affected 92 

by the unintentional release of engineered NPs (ENPs). The use of nanomaterials in 93 
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state-of-the-art industrial processes such as APS has increased in recent years, and it 94 

is expected that this trend will continue in the near future (Savolainen et al., 2013). 95 

Consequently, it is critical to identify any potential risks they may pose to human health 96 

in indoor, workplace and outdoor environments in the vicinity of the industrial emission 97 

source. The evaluation and characterisation of exposure scenarios and risks to 98 

airborne UFPs (whether process-generated or engineered) is addressed by the 99 

emerging field of research of nanosafety (Savolainen et al., 2013). The need for 100 

effective risk governance, which is crucial when developing new technologies and 101 

industrial processes, has been evidenced (Read et al., 2016). 102 

 103 

In this framework, the present work aimed to assess UFP emissions and their potential 104 

impact on workplace exposure during atmospheric plasma spraying of ceramic 105 

coatings in an industrial setting. UFP release to the environment was also assessed. 106 

Moreover, a prevention protocol was implemented and the exposure levels reduction 107 

was quantified. Because of the different terminologies used in the air quality and the 108 

nanotechnology research fields, for the purpose of this work the following terms will be 109 

used: ultrafine particles (<100 nm), and nanoparticles (<50 nm). Particle diameters 110 

measured in this work are mainly submicron, but given that approximately 80% of 111 

particle number concentrations (N) is generally <100 nm, the term UFP will be used as 112 

equivalent to N even if they are not exactly the same. 113 

 114 

2. Experimental setup 115 

Atmospheric plasma spraying was carried out in an industrial-scale pilot plant located 116 

in the facilities of the Institute of Ceramic Technology (ITC) in Castellón, Spain. The 117 

APS system consisted in a monocathode plasma torch (F4-MB, Oerlikon-Metco, 118 

Switzerland) operated by a six-axes robot arm (IRB 1400, ABB, Switzerland). Due to 119 

standard occupational health and safety considerations, plasma spraying in the pilot 120 

plant is performed inside a closed chamber, with no direct interaction by the worker 121 

(Figure S1 in Supporting Information). The projection chamber (3x3x2.5 m3) was 122 

located inside the worker’s room (approximate dimensions 6x6x3 m3), where the 123 

breathing zone was located at approximately 1.5 m from the projection chamber. 124 

 125 

A total of 14 APS processes were carried out, 9 of which using micro-sized powders 126 

and 5 using aqueous suspensions containing submicron- or nano-sized particles as 127 

feedstock (Table 1). The following particle monitoring instrumentation was deployed: 128 

 129 

 In the worker’s room, outside the projection chamber (Figure S1 and S2; Zone 130 

A): a DiscMini particle counter (Testo) monitoring particle number 131 

concentrations (N) between 10-700 nm and mean particle diameter (Dp) was 132 

deployed next to the worker’s desk, at breathing height. Appropriate conductive 133 

tubing (Asbach et al., 2015; Viana et al., 2015) was used. A butanol 134 

condensation particle counter (CPC, TSI Model 3775), monitoring particles 135 

between 4 and 1500 nm, was also used. Particle mass concentrations were 136 

monitored by means of a Grimm 1107 laser spectrometer, measuring PM10, 137 

PM2.5 and PM1 concentrations. Particle samples for TEM-EDX analysis were 138 

collected on Au grids using SKC cassettes attached to a Leland Legacy pump 139 

operating at 6 L/min. 140 

 141 
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 Inside the projection chamber (Figure S1 and S2; Zone B): N concentrations 142 

were monitored using a second DiscMini unit. Particle number size distributions 143 

between 10-420 nm were monitored by means of a portable SMPS NanoScan 144 

(Fonseca et al., 2016b; Stabile et al., 2014; Tritscher et al., 2013), which was 145 

placed for safety reasons outside of the projection chamber and connected with 146 

conductive tubing (Tygon conductive tubing, 1.5 m in length) to the inside of the 147 

chamber. The authors are aware that the length of the tubing may result in 148 

particle losses and is thus a limitation of the study. Samples for the 149 

characterisation of particle morphology and composition by TEM-EDX were 150 

collected using a 3-stage rotating impactor (1 - 2.5 μm, 2.5 - 10 μm, and > 10 151 

μm) using Au grids as collection substrates. 152 

 153 

 Outdoor air: a third DiscMini unit and a second Grimm 1107 unit were deployed 154 

outdoors on the building’s roof and at approximately 1 m from the ventilation 155 

exhaust originating from the worker’s room, to monitor N, Dp, PM10, PM2.5 and 156 

PM1. The instruments were located as close as possible to the exhaust (taking 157 

into account the operational limitations) while avoiding interference from other 158 

exhaust systems. The inlets were not located inside the exhaust to avoid 159 

instrumental failures, since these instrument are not adapted to work in duct 160 

streams. 161 

 162 

All DiscMini and Grimm 1107 units were intercompared prior to the experiments at the 163 

IDAEA-CSIC urban background air quality monitoring station in Barcelona, monitoring 164 

outdoor air. One DiscMini was identified as the internal reference, and the other units 165 

were corrected (with slope and intercept) with regard to it. Correlation coefficients (R2) 166 

between the different units were always >0.8. The Grimm 1107 spectrometers were 167 

corrected individually by comparison with EU reference high-volume samplers for PM10 168 

and PM2.5 mass concentrations. The DiscMini particle counters were also compared 169 

with a TSI SMPS3080 system coupled with a CPC3772 and showed a R2>0.88 170 

correlation with regard to N and a 12-18% relative difference with regard to Dp (Viana et 171 

al., 2015). The particle number concentration data were not corrected with regard to 172 

the SMPS given the different lower cutoff sizes of the DiscMini units and SMPS 173 

system. Finally, the butanol CPC was intercompared with the DiscMini units on site 174 

during a non-activity period (night-time), obtaining a correlation of R2=0.87. The CPC 175 

data were not corrected with regard to the DiscMini units due to their different cutoff 176 

sizes, as in the case of the SMPS. The different particle size ranges of the instruments 177 

(10-700 nm for DiscMini, 4 nm to 1.5 µm for CPC) should be taken into account when 178 

intercomparing the different types of instruments. 179 

 180 

Different feedstock types were tested in order to assess their influence on UFP 181 

emissions (Table 1), including: 182 

 183 

Powders: 184 

 Feedstock P1: ceramic glass powders made up of Na2O, SiO2, CaO, and P2O5. 185 

Its size distribution was micro-sized (<63 µm) with 1% of fluidized SiO2 NPs 186 

(Cañas et al., 2016). 187 

 Feedstock P2: commercial micro-scaled powder of a Ni-based superalloy 188 

(AMDRY 997, Oerlikon-Metco, Switzerland) with a mean particle size of 40 μm. 189 
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Suspensions: 190 

 Feedstock S1: aqueous suspension containing a mix of lab-synthetized nano-191 

sized particles of Gd2Zr2O7 (60nm) and submicron-sized particles of ZrO2-Y2O3 192 

(Tosoh TZ-3YS, 400nm). 193 

 Feedstock S2: aqueous suspension containing nano-sized particles (Gd2Zr2O7). 194 

 Feedstock S3: aqueous suspension containing submicron-sized particles (ZrO2-195 

Y2O3). 196 

 197 

In order to reduce the exposure levels after they were detected (section 3), mitigation 198 

strategies were implemented according to a hierarchical prevention protocol: 199 

 Stage 0: The APS system worked as it was set up by the manufacturer. Plasma 200 

spraying took place inside a cabin (projection chamber) with an air ventilation 201 

system where the air entrance was by a single point from the breathing zone. 202 

 Stage 1: Corrective measures were applied in the emission zone (APS 203 

projection chamber; Figure S1 and S2 at Zone B). 204 

 Stage 2: Corrective measures were applied to the air extraction system. 205 

 Stage 3: Corrective measures were applied in the breathing zone (Figure S1 206 

and S2; Zone A). 207 

Detailed information of the applied corrective measures is provided in section 3.2. A 208 

summary of the APS experiments carried out may be found in Table 1, showing the 209 

feedstocks used, the number of replicas available, and the specific characteristics of 210 

the experimental setup. 211 

 212 

3. Results and discussion 213 

3.1. UFP emissions during plasma spraying 214 

Particle number concentrations and size distribution were monitored inside the plasma 215 

chamber during the application of different feedstock as coatings. Background UFP 216 

number concentrations were representative of typical concentrations in an urban area 217 

(1.6×104/cm3; Pérez et al., 2010; Reche et al., 2011), with Dp ranging between 40-70 218 

nm characteristic of aged diesel exhaust aerosols (Brines et al., 2016; Dall’Osto et al., 219 

2012). The influence of outdoor aerosols was high given that the doors of the pilot plant 220 

were open and connected directly to outdoor air. 221 

 222 

Inside the chamber, results evidenced intense UFP emissions (Figure 1) coinciding 223 

with the spraying events. Particle number concentrations increased by up to 3 orders of 224 

magnitude inside the chamber (in the order of 106/cm3) with respect to background 225 

concentrations (103-104/cm3, Table 2) inside the chamber prior to spraying. This pattern 226 

was consistent across the different replicas (Figure 1). In the example shown in Figure 227 

1, as the spraying process was initiated (after closing the chamber doors) UFP 228 

concentrations increased coinciding with the ignition of the plasma plume. During this 229 

stage, average 10-second UFP concentrations reached 2.1×104/cm3 in the projection 230 

chamber, to subsequently peak at 6×106/cm3 with a Dp of 25-30 nm during spraying of 231 

the feedstock. The emission pattern and measured UFP concentrations and Dp were 232 

mostly consistent across replicas. UFP formation may occur during three stages of 233 

thermal spray: (a) heating and melting of the feedstock, (b) acceleration of the droplets, 234 

and (c) impact and deposition stage. During these stages, UFPs are likely to be formed 235 

through vaporisation and subsequent nucleation of emission gases, or through 236 
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mechanical impaction (Huang et al., 2016). They may also be formed by nucleation 237 

linked to the emission of sulphur-containing gaseous precursors if these are present in 238 

the feedstock (Fonseca et al., 2016a). As shown in Figure 1, the data monitored by the 239 

two particle counters deployed inside the chamber (DiscMini and NanoScan) were also 240 

consistent, thus confirming the high absolute concentration values measured despite 241 

the fact that the peak concentrations were outside the concentration range 242 

recommended by the instrument manufacturers (>106/cm3). 243 

 244 

The results from this study evidence the formation and release of UFPs during plasma 245 

spraying. A previous study focusing on a different kind of high velocity spraying (HVOF) 246 

reported coarse particle emissions (>10 µm in size) with a unique morphology of 247 

polygonal or irregular block of crushed powder, and finer dust particles (2.5 µm) in the 248 

form of irregular or flocculent agglomerates (Huang et al., 2016). The authors 249 

monitored particle mass concentrations (PM, as opposed to N in this work) reaching 250 

maximum concentrations of 140 mg/m3, with time-weighted average concentrations of 251 

34 mg/m3. In such a highly polluted scenario PM concentration should be the preferred 252 

exposure metric. Due to the particle concentration levels monitored in the scenario 253 

assessed in the present work, N was considered a more targeted metric for emissions 254 

and exposure monitoring (Vogel et al., 2014). To the authors’ knowledge, Huang et al. 255 

(2016) is the only previous publication available monitoring particle release and 256 

exposure due to plasma spraying. 257 

 258 

The experimental setup described above was replicated for the different kinds of 259 

feedstock shown in Table 1, with the results shown in Figure 2 and Table 2. Plasma 260 

spraying generated high UFP emission concentrations under all scenarios, which 261 

ranged between 2.6×106 and 3.3×106/cm3 for experiments #1 to #3, and between 262 

1.1×106 and 2.5×106/cm3 for experiments #4 to #7. This relative decrease was probably 263 

linked to the implementation of mitigation strategies which will be discussed below. The 264 

mean Dp distribution monitored during experiments carried out at different stages of 265 

the prevention protocol is shown in Figure S3 in Supporting Information, including the 266 

following experiments: #2 and #3 (stage 1), #4 (stage 2) and #7 (stage 3). Aside from 267 

the differences obtained owing to the mitigation strategies, results evidence that major 268 

UFP emissions were generated during the application of both nano- and micro-sized 269 

suspensions and powders, thus suggesting that the emissions are related to the 270 

process and not only to the grain size distribution of the input material. This is 271 

consistent with previous results (Huang et al., 2016). The feedstocks applied during 272 

experiments #4, #6 and #7 were characterised by mean Dp of 60 and 400 nm 273 

(Gd2Zr2O7, and ZrO2-Y2O3, respectively), whereas the remaining materials were 274 

predominantly micro-sized (<63 µm) with only minor contributions (1%) from 275 

nanomaterials in the case of ceramic glass powders. As shown in Figure 2, mean Dp 276 

inside the chamber did not vary significantly across experiments and ranged between 277 

28 nm in experiment #2 (micro-scaled feedstock) and 45 nm in experiment #6 (nano-278 

scaled feedstock), and showed no consistent pattern for either type of material. As a 279 

result, it may be concluded that UFP emissions from APS are process-related. No 280 

statistically relevant conclusions can be drawn with regard to N emitted with the 281 

different types of coatings due to the fact that the measurements were carried out 282 

under different exhaust ventilation conditions inside the chamber. 283 

 284 
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In order to characterise their morphology and chemical composition inside the chamber 285 

particles were sampled on TEM grids. It should be noted that TED-EDX results are not 286 

quantitative, and refer to single particles identified. As expected, different particle 287 

morphologies were observed. Figure 3a shows an example of spherical particles 288 

originating from evaporation and condensation or fusion of the feedstock, in this case 289 

originating from the aqueous suspension containing submicron-sized particles (ZrO2-290 

Y2O3). In addition, release of the pristine (original) ENPs was also identified (Figure 291 

3b), in the case of the Gd-based ENPs. Mauer et al. (2015) reported the difficulties in 292 

coating with Gd2Zr2O7 due to the fact that the material is partly decomposed inside the 293 

plasma plume and the Gd2O3 is evaporated. Thus, this confirms that the ENPs 294 

detected by TEM may have been originated due to a partial evaporation of the 295 

feedstock and subsequent condensation of the vapour. Given the high correlation 296 

between particle concentrations in the plasma chamber and in the worker breathing 297 

zone (Figure 4), it is expectable that exposures to the ENPs detected inside the 298 

chamber occur in the breathing zone. Further studies are necessary to confirm this 299 

hypothesis. Finally, Ca-rich particles probably sourcing from the feedstock (Figure 3c) 300 

were also observed. These results are also consistent with the variety of particle 301 

morphologies detected in previous studies (Huang et al., 2016). 302 

 303 

3.2. Impact on exposure 304 

Worker exposure to UFP emissions from the plasma chamber was assessed by 305 

placing monitoring instruments on a desk in close proximity to the worker and at 306 

breathing height, thus closely simulating breathing zone conditions (Asbach, 2015; 307 

Vogel et al., 2014). Plasma spraying activities inside the chamber had an evident and 308 

statistically significant impact (>background + 3.σbackground; Asbach et al. 2012) in the 309 

breathing zone (Figure 4). Breathing zone UFP concentrations followed an increasing 310 

pattern coinciding with the start of the spraying process, but with a 1-2 minute delay 311 

due to transport from the chamber towards the breathing zone. In the example shown 312 

in Figure 4, representative of experiments #2 to #3 (stage 1), UFP concentrations 313 

increased from 2.2×104/cm3 prior to the spraying activity to 7.2×105/cm3 during and 314 

after spraying. Mean Dp increased by 10-20 nm (Table 2) with regard to those 315 

measured inside the plasma chamber probably due to particle transport and ageing 316 

between the two measurement locations (approximately 2 m). The uncertainty of the 317 

monitoring instrumentation should evidently be taken into account for this assessment. 318 

As a result it may be concluded that, for experiments #1 to #3, the exhaust system in 319 

place was able to remove between 68% and 91% of the UFP monitored inside the 320 

plasma chamber, resulting in significant exposure concentrations in the breathing zone 321 

and with potentially health hazardous Dp (33-51 nm; Table 2). 322 

 323 

Aside from the actual spraying periods, worker exposures also occurred during 324 

cleaning (by using a vacuum cleaner) of the chamber at the end of each spraying 325 

process. As expected, this activity impacted PM10 and PM2.5 concentrations due to the 326 

coarser Dp of the particles re-suspended, with concentrations increasing from 5 to 350 327 

µgPM2.5/m
3 (Figure 5). Conversely, emissions from direct APS had only minor impacts 328 

on PM2.5 mass. Even though these results may seem to contrast with previous studies 329 

(Huang et al., 2016), it is probable that the cause are the different concentration and 330 

exposure ranges in both plasma spraying scenarios, possibly influenced by the 331 

different technologies applied (APS vs. HVOF). 332 
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 333 

In order to reduce exposure concentrations, the prevention protocol described in the 334 

Methods section was applied by implementing the following measures:  335 

 Stage 1: Improved air circulation in the plasma chamber using a multi-point 336 

system surrounding the plasma flame, as well as a delayed door-opening 337 

protocol. The air intake into the plasma room was changed from the breathing 338 

zone to directly from outdoor air. 339 

 Stage 2: Enhanced sealing of the extraction system ducts from the chamber to 340 

the exhaust, to prevent the flow of emissions towards the breathing zone. 341 

 Stage 3: Enhanced air exchange rates through forced ventilation in the 342 

breathing zone (to approximately 14 air exchanges per hour, in contrast to the 343 

original 2 air exchanges per hour). 344 

 345 

Reductions in exposure concentrations in the breathing zone are evident after the 346 

implementation of the mitigation strategies (Figure 2). The comparison between 347 

experiments #1 and #2 evidences a reduction of UFP concentrations of approximately 348 

70% (from 8.3x105 to 2.7 x105/cm3, monitored with DiscMini). Likewise, the comparison 349 

between experiments #3 and #6 shows a 75% reduction of UFP concentrations 350 

between stages 1 and 3 (from 1.8 x105 to 4.4x104/cm3, monitored with the CPC). Even 351 

though the reductions observed are experiment-dependent and data are not available 352 

from the same instrument for all experiments for direct comparison, these results 353 

evidence the benefits of the exposure mitigation protocol implemented. Exposure 354 

reductions were monitored in the breathing zone, while concentrations remained 355 

relatively constant (same order of magnitude) inside the projection chamber. 356 

 357 

Finally, UFP concentrations in the breathing zone after the implementation of the 358 

mitigation strategies (1.9x104/cm3, measured with the CPC) were comparable to those 359 

monitored in urban environments in European cities as such as Barcelona, London or 360 

Bern (1.2×104-2.8×104/cm3; Reche et al., 2011). However, it should be taken into 361 

account that the exposure risk also depends on the coating chemical composition 362 

which in some cases may include potentially health hazardous materials. 363 

 364 

3.3. Impact on environmental release 365 

In addition to exposure, APS emissions impacted outdoor air. Environmental release of 366 

UFPs, monitored on the rooftop of the pilot plant (5 m above ground) in the vicinity of 367 

the exhaust system (1 m), was evidenced through a 1-order of magnitude increase in 368 

UFP concentrations (1.7×104/cm3 to 2.5×105/cm3; Figure 4), which was again observed 369 

across all replicas (Figure 1). As in the case of the breathing zone, this increase should 370 

also be considered statistically significant (Asbach et al., 2012). However, no 371 

environmental or health impacts should be expected from this specific pilot plant due to 372 

(a) the short temporal impact of the emissions (<2 min), (b) their fast dilution in outdoor 373 

air, (c) the fast coagulation/agglomeration of particles and thus their increase in particle 374 

diameter, and (d) the chemical composition of the feedstock used in these 375 

experiments, resembling mineral matter. Despite this, APS may be used to apply a 376 

broad variety of coatings which include potentially health hazardous metals (e.g., Cr, 377 

Co, W, etc.), in which case environmental release of such metal-rich UFPs should be 378 

monitored and prevented (Li et al., 2016) using appropriate gas cleaning systems. 379 

 380 
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4. Conclusions 381 

Ultrafine particle emissions and their impact on workplace exposure were monitored 382 

during atmospheric plasma spraying (APS) in an industrial-scale pilot plant. Particle 383 

diameters monitored ranged between 10-700 nm but are reported as UFP given that 384 

80% of total N is generally found in the <100 nm size range. UFP emissions were 385 

expected due to the high-energy nature of this industrial process. Results evidenced 386 

major UFP emissions during APS reaching up to 3.3×106/cm3 inside the projection 387 

chamber with Dp ranging between 28-45 nm. Breathing zone concentrations reached 388 

up to 8.3×105/cm3 (33-51 nm in diameter). These concentrations were statistically 389 

significantly higher than the initial background concentrations of 103-104/cm3, and thus 390 

evidence the health hazardous potential of this industrial process. The nature of the 391 

emissions was investigated by testing micro- and nano-sized feedstocks, including 392 

engineered nanoparticles (ENPs). The mean Dp inside the APS chamber did not vary 393 

significantly across experiments and showed no consistent differences between the 394 

different feedstocks. Thus, it was concluded that UFP emissions were detected 395 

irrespective of the presence of ENPs in the feedstock, and that they were therefore 396 

process-related. In a minor proportion, release of pristine ENPs to the plasma chamber 397 

air was also evidenced by TEM microscopy. New particle formation originating from the 398 

evaporation of the feedstock was also detected. A risk prevention protocol was applied 399 

to the studied facility, leading to significant reductions in breathing zone UFP 400 

concentrations. This work evidences the relevance of process-generated emissions 401 

with regard to workplace exposure to nanoparticles, and the need for real-world 402 

assessments in order to identify exposure risks and improve indoor air quality in 403 

industrial settings by implementing effective prevention protocols. 404 

 405 
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Figure captions 534 

Figure 1. Top: Particle number concentrations (N, 10-700 nm with DiscMini; 10-420 nm 535 
with NanoScan SMPS) monitored during 3 replicas in experiment #2, using a 536 
micrometric powder (Na2O; SiO2; CaO; P2O5; 1% nano) as feedstock, in the plasma 537 
chamber and in outdoor air. Bottom: Particle size distribution monitored during 3 538 
replicas in experiment #2. The plasma spraying activity of each replica is shown as a 539 
horizontal line between grey circles. 540 
 541 
Figure 2. Mean particle number concentrations (N) and particle diameter (Dp) inside the 542 
plasma chamber for each of the experiments performed. 543 
 544 

Figure 3. TEM images of particles collected on TEM grids inside the plasma chamber. 545 
(a) spherical particles originating from evaporation of the feedstock (ZrO2-Y2O3 546 
nanoparticles), experiment #7; (b) release of pristine Gd-based ENPs, experiment #6; 547 
(c) mineral (Ca) particles probably sourcing from the feedstock, experiment #2. 548 
 549 
Figure 4. Particle number concentrations (N, 10-700 nm with DiscMini; 4 nm to 1.5 µm 550 
with CPC) monitored during one of the replicas in experiment #2, using a micro-sized 551 
powder (Na2O; SiO2; CaO; P2O5; 1% nano) as feedstock. Measurements carried out in 552 
the plasma chamber, in the breathing zone, and in outdoor air. The plasma spraying 553 
activity is shown as a horizontal line between grey circles. 554 
 555 

Figure 5. Impact of cleaning activities on particle mass concentrations (PM2.5) in the 556 
plasma chamber. Work activities such as plasma spraying or cleaning are shown as a 557 
horizontal line between grey circles. 558 
  559 
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c)   569 
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Figure 5 577 

 578 

 579 

 580 
Table 1. Summary of plasma spraying experiments. Experimental setup: pre- or post-mitigation 581 
strategies. P: powder. S: suspension 582 
 583 

Experiment 
(date) 

Feedstock 
Grain size 

(feedstock) 
Composition Replicas Setup 

#1 
(31/10/15) 

P1 Micro 
Na2O; SiO2; CaO; P2O5 

(1% nano) 
1 Stage 0  

#2 
(17/12/16) 

P1 Micro 
Na2O; SiO2; CaO; P2O5 

(1% nano) 
4 

Stage 1 
#3 

(17/12/16) 
P2 Micro NiCoCrAlTaY 1 

#4 
(17/12/16) 

S1 
Submicro + 

Nano 
ZrO2-Y2O3 + Gd2Zr2O7 1 Stage 2 

#5 
(08/01/16) 

P2 Micro NiCoCrAlTaY 3 

Stage 3 
#6 

(08/01/16) 
S2 Submicro Gd2Zr2O7 2 

#7 
(08/01/16) 

S3 Nano ZrO2-Y2O3 2 

 584 

 585 
 586 

 587 
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Table 2. Mean UFP number concentrations and particle diameter inside the plasma chamber and in the breathing zone for each of the experiments 588 
performed, prior to and during the spraying activity. Data not available in the breathing zone for experiments #5 to #7 due to instrumental failures. 589 

 590 

Experiment Feedstock 

Setup 

UFP (#/cm
3
) 

 Grain size Plasma chamber Breathing zone 

  Background Plasma spraying Background Plasma spraying 

  DiscMini NanoScan Discmini NanoScan DiscMini CPC DiscMini CPC 

#1 Micro Stage 0 9.0×10
3
 9.5×10

3
 2.6×10

6
 7.9×10

5
 9.8×10

3
 N/A 8.3×10

5
 N/A 

#2 Micro 
Stage 1 

1.4×10
4
 1.6×10

4
 3.0×10

6
 2.6×10

6
 2.2×10

4
 3.3×10

4
 2.7×10

5
 2.6×10

5
 

#3 Micro 1.4×10
4
 2.0×10

4
 3.3×10

6
 3.2×10

6
 2.8×10

4
 2.6×10

4
 7.2×10

5
 1.8×10

5
 

#4 Submicro + Nano Stage 2 2.7×10
4
 2.9×10

4
 1.3×10

6
 1.7×10

6
 2.6×10

4
 3.2×10

4
 2.9×10

5
 5.2×10

4
 

#5 Micro 

Stage 3 

3.2×10
4
 N/A 1.8×10

6
 N/A N/A 1.8x10

4
 N/A 4.4x10

4
 

#6 Submicro 7.8×10
3
 N/A 1.1×10

6
 N/A N/A 9.7x10

3
 N/A 1.9x10

4
 

#7 Nano 2.9×10
4
 2.7×10

4
 2.5×10

6
 1.3x10

6
 N/A N/A N/A N/A 

  

 

Size (nm) 

  Plasma chamber Breathing zone 

  Background Plasma spraying Background Plasma spraying 

  DiscMini NanoScan N Discmini NanoScan DiscMini CPC DiscMini CPC 

#1 Micro Stage 0 70 64 38 59 61 - 47 - 

#2 Micro 
Stage 1 

34 42 28 47 33  33  

#3 Micro 45 56 35 53 44  45  

#4 Submicro + Nano Stage 2 52 62 32 48 52  51  

#5 Micro 

Stage 3 

34 N/A 39 N/A N/A  N/A  

#6 Submicro 74 N/A 45 N/A N/A  N/A  

#7 Nano 61 72 37 47 N/A  N/A  

N/A: not available 591 
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Determinants of workplace exposure and release of ultrafine particles during 595 

atmospheric plasma spraying in the ceramic industry 596 
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 601 
 602 
Figure S1. Projection chamber (left) and worker’s room (right) 603 

 604 
Figure S2. Scheme of plasma projection scenario. 605 
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 606 
Figure S3. Particle size distribution measured in the plasma chamber during plasma spraying 607 
activities: experiment #2 (micro size; mean obtained by 4 replicas for spraying activity), 608 
experiment #3 (micro size; 1 replica), experiments #4 (submicron- and nano-sized; 1 replica), 609 
and experiment #7 (submicron- and nano-sized; mean obtained by 2 replicas for spraying 610 
activity). Particle size distribution for experiments #5 and #6 is not available. 611 


