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Abstract

The phenomenon in which the expected Mendelian inheritance is altered is known as trans-

mission ratio distortion (TRD). The TRD analysis relies on the study of the transmission of

one of the two alleles from a heterozygous parent to the offspring. These distortions are due

to biological mechanisms affecting gametogenesis, embryo development and/or postnatal

viability, among others. In this study, TRD phenomenon was characterized in horses using

SNP-by-SNP model by TRDscan v.2.0 software. A total of 1,041 Pura Raza Español breed

horses were genotyped with 554,634 SNPs. Among them, 277 horses genotyped in trios

(stallion-mare-offspring) were used to perform the TRD analysis. Our results revealed 140

and 42 SNPs with allelic and genotypic patterns, respectively. Among them, 63 displayed

stallion-TRD and 41 exhibited mare-TRD, while 36 SNPs showed overall TRD. In addition,

42 SNPs exhibited heterosis pattern. Functional analyses revealed that the annotated

genes located within the TRD regions identified were associated with biological processes

and molecular functions related to spermatogenesis, oocyte division, embryonic develop-

ment, and hormonal activity. A total of 10 functional candidate genes related to fertility were

found. To our knowledge, this is the most extensive study performed to evaluate the pres-

ence of alleles and functional candidate genes with transmission ratio distortion affecting

reproductive performance in the domestic horse.

Introduction

The deviation from the expected Mendelian inheritance of alleles from heterozygous parents

to offspring is known as transmission ratio distortion (TRD) [1, 2]. This phenomenon reveals

locus-specific selection acting between the heterozygous parents and the offspring genotype

[3]. The TRD phenomenon has been observed in a large number of organisms, including

plants [4], humans [5] and animals [2, 6–9]. This transmission deviation can be caused by a

broad range of biological mechanisms affecting gametogenesis, fertilization or embryogenesis
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[10], including germline selection [11], meiotic drive [12], gametic competition [13], embryo

or fetal lethality [13, 14], imprinting resetting error [15] and differential postnatal viability

[16]. According to the phase in the life cycle which occurs, it may affect both the distortion pat-

tern and the associated phenotypic [3]. Currently, it is a challenge to determine the physiologi-

cal stage at which TRD occurs and the associated biological cause in most species.

The development of new statistical methodologies using Bayesian approach allows to iden-

tify novel genomic regions with TRD [17, 18] elucidating more accurately the genetic mecha-

nisms underlying the distortion on the Mendelian segregation. These new methodologies are

based on tracing the allele inheritance from parents to offspring using genotypes of parent-off-

spring trios. Two parameterization models exist. The allelic parameterization allows to identify

stallion- and mare-specific TRD, in addition to the overall TRD [6, 7]. Alternatively, genotypic

parameterization models the interactions between alleles in the offspring genotypes, including

the additive and dominance components of the TRD [2, 19]. These models allow comprehen-

sive characterization of TRD across the genome by capturing all types of TRD and enables to

anticipate the biological inheritance and the origin of TRD [20]. Even with these advances,

knowledge about the possible causes and magnitude of TRD in livestock species is still largely

unknown [18, 19, 21–23]. Especially in the case of the horse, the studies on the TRD phenome-

non are still scarce [24] compared to other livestock species.

Nowadays, the increasing availability of high-throughput genotyping and sequencing tech-

nologies has provided a powerful source of genomic data and thus parents-offspring (stallion–

mare–offspring) genotyped trios, allowing to study TRD signals in the genome. Using the

TRD approach will allow us to identify genetic factors that regulate gamete, zygote, and

embryo survival, and discover chromosomal regions with TRD that may contain genes with

causal mutations affecting reproduction in horses. These findings could improve reproductive

success in the equine sector. Notice that the reproductive efficiency of a livestock herd plays a

crucial role in its profitability, and this is true for all livestock species, including horses. How-

ever, despite its significance, reproductive performance studies in equines are very scarce [25,

26] and lower reproductive performance, mainly due to its relative low fertility, has been

reported [27]. In addition, although it is a trait of low heritability [28], it is still a selection tar-

get in most livestock species. Incorporating fertility traits into equine breeding programs

remains a challenge, largely due to the difficulty of establishing reliable selection criteria. Fur-

thermore, in many equine breeds, fertility traits are not given the same importance as other

functional, behavioral, and morphological traits. In the case of the Pura Raza Español (PRE)

breed horse, there is an interest in increasing the reproductive performance of its mares [28].

Therefore, the aim of this study was to investigate TRD in the horse genome to identify

genomic regions showing altered Mendelian segregation deviations and to perform functional

analysis of candidate genes located within the TRD regions to uncover affected biological pro-

cesses and metabolic pathways associated with economically important traits such as repro-

duction in horses.

Materials and methods

Ethics statement

All experiments were performed in accordance with the guidelines in EU Directive 2012/63/

EU. Blood and DNA samples were provided by the Asociación Nacional de Criadores de

Caballos de Pura Raza Española (ANCCE). All owners gave their written consent to ANCCE

for the use of their horse’s DNA sample for scientific research. No animal experiments were

carried out.
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Animal material, genotype data and imputed genotypes

A total of 1,041 Pura Raza Español breed horses were genotyped. Among them, 277 horses

genotyped in trios (offspring-stallion-mare) were considered to perform the TRD analysis,

among them, 154, 47 and 93 were offspring, stallions, and mares, respectively.

Genomic DNA was isolated from blood or hair samples using a DNeasy Blood & Tissue

extraction kit (Qiagen). Horses were genotyped with high density Axiom™ Equine SNP Geno-

typing Array (Thermofisher), including 670,804 markers uniformly distributed across the

entire genome [29]. The raw genotype data was analyzed following the “Best Genotyping Prac-

tices Workflow” with the Axiom Analysis Suite 5.0 software with the default parameters

(DishQC� 0.82 and call rate� 0.97). Quality control analyses were performed using PLINK

v1.9 software. Non-autosomal SNP markers and those with a call rate below 95% were dis-

carded from further analysis. The final genomic data included 554,634 SNPs distributed across

the 31 chromosomes.

To assess and reduce the possible effects of genotyping error on TRD estimation, the data

were phased, and missing SNP were imputed using FImpute software [30].

Analytical models of transmission ratio distortion

To determine SNPs subject to TRD across the whole horse genome a Bayesian approach to

analyze TRD SNP-by-SNP was implemented [17]. Three models were considered to trace allele

inheritance from parents to offspring in this population of horses. Two allelic models with par-

ent-unspecific and -specific TRD effects [6] and a genotypic model with additive and domi-

nance TRD effects were used [6].

Allelic model. As described Casellas et al. [6, 7], the probability of allele transmission (P)

from heterozygote parents (A/B) to offspring was parameterized including one overall TRD

effect (α) on a parent-unspecific model or differentiating between stallion- (αs) and mare-spe-

cific TRD effects (αd) on a parent-specific model:

PðAÞ ¼ 1 � PðBÞ ¼ 0:5þ a and PðBÞ ¼ 1 � PðAÞ ¼ 0:5 � a;

PiðAÞ ¼ 1 � PiðBÞ ¼ 0:5þ ai and PiðBÞ ¼ 1 � PiðAÞ ¼ 0:5 � ai with i ¼ ½s U d�

where; α, αs and αd are TRD parameters which assumed flat priors within a parametric space

ranging from -0.5 to 0.5.

Genotypic model. As developed Casellas et al. [2], genotypic parameterization can be

modeled by assuming additive (αg) and dominance (δg; or over- / under-dominance) parame-

ters, regardless of the origin of each allele. Following Casellas et al. [19], the probability of the

offspring (Poff) from heterozygous-by-heterozygous mating are:

Poff AAð Þ ¼
ð1þ ag � dgÞ

4
; Poff ABð Þ ¼

1þ dg

2
and Poff BBð Þ ¼

ð1 � ag � dgÞ

4

where; αg and δg are additive- and dominance-TRD parameters, respectively.

For heterozygous-by-homozygous mating, correction for overall losses of individuals in

terms of genotypic frequency are needed to guarantee Poff(AA) + Poff(AB) + Poff(BB) = 1.

Thus, genotypic frequencies in offspring from AA × AB mating as example become:

Poff AAð Þ ¼
ð1þ ag � dgÞ

2xð1 þ ag=2Þ
; Poff ABð Þ ¼

ð1þ dgÞ

2xð1 þ ag=2Þ
and Poff BBð Þ ¼ 0

Flat priors were assumed for both αg and δg within a deepened parametric space. The latter
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range initially [–1, 1] for αg with a p(αg) = 1/2 and becomes restricted to [-1+ δg, 1- δg] with a p

(αg) = 2 / (2–2 × δg) when δg > 0. For the δg component, the parametric space ranges [-1, |αg|]

with a p(δg) = 1/ (1 + αg).

Statistical analyses. The TRDscan v.2.0 software [17] was used to analyze TRD SNP-by-

SNP across the whole horse genome. Both imputed and raw data were tested in order to assess

and reduce the possible effects of genotyping error on TRD estimation. Each model was ana-

lyzed by running a Markov chain Monte Carlo with 110,000 iterations where the first 10,000

iterations were discarded as burn-in. To avoid false TRD, only SNPs with a minimal number

of 10 informative offspring and two informative stallions and/or mares were analyzed as

described by Id-Lahoucine et al. [17]. The statistical significance of the TRD was tested using a

Bayes factor (BF) [31]. Both allelic and genotypic parameterizations were compared using the

deviance information criterion (DIC, [32]) to determine the goodness-of-fit and the inheri-

tance pattern of each SNP.

Gene annotation and functional analysis

Genetic markers with significant TRD values were used to perform functional enrichment

analysis. Genes were annotated within 250 kilobase pair (Kb) interval upstream and down-

stream from the SNP position using the Ensembl BioMart tool [33] with the Equus caballus
reference genome (EquCab3.0. http://www.ensembl.org/Equus_caballus/Info/Index).

The genes annotated within the significant TRD regions were used to perform functional

analysis including gene ontology (GO) analysis, metabolic pathway analysis and gene net-

works. The three GO categories (biological process (BP), molecular function (MF) and cellular

component (CC)) were analyzed as described by Cánovas et al. [34]. The GO enrichment anal-

ysis and the metabolic pathways analysis were performed using AmiGO 2 [35], PANTHER

GO-slim [36] and the Database for Annotation, Visualization and Integrated Discovery

(DAVID) [37]. Significance levels were computed following a modification of Fisher’s exact

test. Multiple testing-corrected P-values were also obtained using the Benjamini and Hochberg

algorithm, and only GO terms with Benjamini-corrected P-values 0.05 were considered.

Results

TRD signals in the horse genome

The presence of TRD was evaluated in the horse genome using two models (allelic and geno-

typic parametrization). To minimize genotyping errors that may generate false-positive TRDs,

we compared all TRD regions using two datasets, the raw genotypes and the imputed geno-

types. Most of them exhibited similar patterns, being 98.52% of TRD signals identical. A 3.73%

of regions were significant when raw data were analyzed and showed null TRDs when data

were imputed, suggesting that possible genotypic errors were corrected. Therefore, the

imputed data were kept for further analysis following Id-Lahoucine et al. [17].

Regions with TRD signals were observed within the horse genome. With a threshold > 100

for BF according to Jeffreys’ scale [38], a large number of SNPs (473) with TRD were found to

exhibit decisive evidence of distortion. To target the most relevant TRD regions, a more

restricted criteria were applied following Id-Lahoucine et al. [17]. For TRD regions, a minimal

informative offspring (> 20) was considered to minimize possible false TRD. The approximate

empirical null distribution of TRD at< 0.1% margin error was used in order to eliminate

TRD generated by chance [20]. Finally, only SNP with moderate to strong TRD magnitude

(i.e., jTRDj> 0.2) were considered. The prevalence of TRD was widely distributed across the

horse genome (Fig 1), being the chromosomes ECA1, ECA2, ECA3, ECA4, ECA6, ECA12,

ECA15, ECA18, ECA20, ECA22, ECA28 that higher presence of TRD.
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Allelic TRD patterns. Most of the regions (77%) fitted better with the allelic model when

comparing different TRD models based on DIC units. Thus, 140 SNPs were detected with the

allelic TRD pattern showing decisive evidence (BF > 100) (S1 Table). Among them, 31 SNPs

with TRD were supported by large evidence according to BF (� 105). The SNP (3:

117,731,559) with the largest evidence according to BF (� 1010) exhibited a |TRD magnitude|

of 0.3 and 121 informative offspring. The top (24) significant SNP markers according to BF are

shown in S1 Table. In addition, SNPs with TRD were grouped according to the allele transmit-

ted preferentially based on parental origin (stallion/mare). Allelic TRD from the stallion was

detected in 63 SNPs and allelic TRD from the mare in 41 SNPs whereas 36 SNPs were with

overall TRD. The observed overall TRD, stallion-TRD and mare-TRD had strong magnitudes

(absolute values) of up to 0.44, 0.47 and 0.44, respectively.

Fig 1. Manhattan plot of SNPs with allelic and genotypic transmission ratio distortion across the horse genome. A) Bayes Factor of SNPs with TRD. B)

Magnitude of TRD. Overall-TRD (Yellow); stallion-TRD (Green); mare-TRD (Purple); genotypic-TRD (Blue). Suggestive line (red) in log10(BF) = 2 (decisive

evidence).

https://doi.org/10.1371/journal.pone.0289066.g001
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On the other hand, SNPs physically linked were found showing the same TRD patterns,

thus supporting the relevant of TRD region in the particular segment (S1 Table). These regions

were located on different chromosomes, highlighting the regions on ECA1, ECA2, ECA3,

ECA4, ECA15, ECA18, ECA20 and ECA28. Regions with mare-TRD effect covering several

physical linked SNPs were found on chromosomes 1 (from 168,787,353 bp to 168,881,002), 2

(from 64,444,863 bp to 64,728,073 bp and from 107,779,387 bp to 108,134,857 bp), and 15

(from 65,988,635 bp to 66,617,913 bp) with |mare-TRD| ranging from 0.245 to 0.345, while

regions with a stallion-TRD effect were located on ECA1 (from 71,520,651 bp to 71,678,688

bp), ECA4 (from 50,222,982 bp to 50,726,125 bp), and ECA15 (from 7,428,750 bp to 8,065,247

bp) with |stallion-TRD| ranging from 0.231 to 0.39. Finally, a parent unspecific TRD was

noticeable on chromosomes 3 (from 117,722,958 bp to 117,793,513 bp), 18 (from 13,762,225

bp to 13,831,055 bp) and 20 (from 32,414,941 bp to 32,416,535 bp) with |overall-TRD| ranging

between 0.212 and 0.3.

Genotypic TRD pattern. Based on the genotypic parametrization model and according

to DIC value, 42 SNPs were detected showing a genotypic TRD pattern with additive- and/or

dominance-TRD effects (BF> 100) (S1 Table). According to the statistical significance, 34

SNPs with TRD exceeding a BF� 105 were detected and 18 of them with BF� 1010. The top

significant SNPs according to BF are shown in S1 Table. The genotypic-TRD of the significant

SNPs had strong magnitudes (absolute values) of up to 0.915. In addition, physically linked

SNPs showing the same TRD patterns were found. These SNPs were found on ECA4 (from

97,130,353 bp to 97,219,055 bp), ECA12 (from 13,735,842 bp to 14,260,304 bp) and ECA20

(from 31,427,405 bp to 31,601,086 bp). The |genotypic-TRD| of these regions was 0.299

between and 0.768.

Functional enrichment analysis

Functional annotation of positional candidate genes was performed for the 182 SNPs detected

displaying transmission ratio deviations: 140 SNPs with allelic TRD (overall TRD, stallion- and

mare-TRD) and 42 SNPs with genotypic TRD (additive- and dominance-TRD). A total of 296

genes were annotated in an interval of 500Kb (250 Kb up- and downstream) for the individual

SNPs with allelic TRD effect (S2 Table). Among them, 30 genes were located overlapping the

position of candidate SNP. In addition, 138 genes were annotated in an interval ± 250Kb for the

SNPs with genotypic TRD effect finding 5 genes in the position of SNP (S3 Table).

Gene ontology terms and metabolic pathways enriched in the list of candidate genes

with allelic and genotypic TR. Candidate genes annotated (296) in the interval of 500Kb for

the individual SNPs showing allelic TRD were used to perform GO analysis including the

three main GO categories of biological process, cellular component, and molecular function

and into the respective metabolic pathways using different software. As results, 15 BP, 10 MF

and 6 CC were significantly identified (p-value < 0.05; S4 Table). In turn, GO terms were clus-

tered using PANTHER GO Slim as shown in Fig 2A and S1 Fig.

The top significant biological processes included magnesium ion homeostasis

(GO:0010960) collagen catabolic process (GO:0030574) and potassium ion transmembrane

transport (GO:0071805). The most significant GO terms for MF were NADP binding

(GO:0050661), N,N-dimethylaniline monooxygenase activity (GO:0004499), and ATPase

activity (GO:0016887). Finally, intracellular membrane-bounded organelle (GO:0043231),

membrane raft (GO:0045121) and extracellular region (GO:0005576) were identified as top

significant CC GO terms. On the other hand, 9 metabolic pathways were identified signifi-

cantly (p-value <0.05, S4 Table). The top significant metabolic pathways were mTOR signal-

ing pathway, taurine and hypotaurine metabolism and cytokine-cytokine receptor interaction.
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Regarding SNPs with genotypic TRD effect, Gene Ontology analysis was performed using

the list of 138 genes annotated in the interval of 500Kb. The ontological analysis identified 22

BP, 16 MF and 2 CC significant enriched with p-value < 0.05 (S5 Table). Moreover, these GO

terms were clustered using PANTHER GO Slim as shown in Fig 2B and S2 Fig.

The top significant biological processes included histone citrullination (GO:0036414), sen-

sory perception of smell (GO:0007608) and negative regulation of actin filament polymeriza-

tion (GO:0030837). Likewise, protein-arginine deiminase activity (GO:0004668), protein

tyrosine/serine/threonine phosphatase activity (GO:0008138), and protein heterodimerization

activity (GO:0046982) were identified as top significant molecular function GO terms. Simi-

larly, the most significant GO terms of cellular component were nucleosome (GO:0000786)

and nucleus (GO:0005634). Lastly,9 significant metabolic pathways were found (p-

value < 0.05, S5 Table). The most significant metabolic pathway included neutrophil extracel-

lular trap formation.

Functional candidate genes. A total of 11 functional candidate genes related to fertility

and reproduction process were found (Table 1). Among them, 7 were associated with allelic

TRD (SPATA5, SPIRE1, PDPK1, BAG6, HSPA1L, EHMT2, and MSH5) and 4 with genotypic

TRD (FGF8, NOS2, RELA, and PDGFB). These genes are related to spermatogenesis, oocyte

division, embryonic development, and hormonal activity, such as gonadotropin-releasing hor-

mone, and testosterone biosynthesis.

Fig 2. Gene Ontology (GO) analysis using the list of genes with TRD effect in horse using AmiGO and PANTHER

GO-Slim. A) Biological Process sector diagram of the list of genes with allelic TRD. B) Biological Process sector

diagram of the list of genes with genotypic TRD.

https://doi.org/10.1371/journal.pone.0289066.g002
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Discussion

Deviation from the expected mendelian inheritance on horse genome

This study focused on discovering genomic regions which are not transmitted according to

the rules of Mendelian heritage but deviate from inheritance expectations showing signals of

TRD in the horse genome. The analysis of the TRD phenomenon through genotyped trios

allows us to accurately characterize the incidence, the biological nature, and the magnitude of

TRD across the genome. As well as discovering functional genes related to reproductive mech-

anisms and fertility in the regions affected by TRD. For this purpose, of the 1,041 genotyped

horses belonging to the Pura Raza Español horse breed, 277 PRE horses forming stallion-

mare-offspring trios were used. The TRD SNP-by-SNP approach was performed on two data-

sets, the raw and imputed genotypes, to minimize genotyping errors that could potentially pro-

duce significant artifacts in the TRD analyses [20]. Some studies have pointed out that

genotyping errors are a major problem in TRD analysis [5, 39]. Recently, Id-Lahoucine et al.

[17] demonstrated that providing more informative and accurate data by imputation avoids

potential TRD false positives generated by genotyping error. Based on our results, we demon-

strated that using the imputed genotypes minimized the occurrence of false positive TRDs.

To date, the presence of TRD in the horse genome has been slightly demonstrated [24].

Our results demonstrated the existence of allelic and genotypic distortion patterns in the Pura

Raza Español horse genome. Interestingly, SNPs were found close to each other with the same

TRD patterns, evidencing the presence of important candidate mutations with different physi-

cally linked SNPs. Our results showed regions where multiple nearby SNPs exhibited the same

distortion, providing support for the TRD effect. It is crucial to note that the magnitude of

TRD for SNPs within these regions determines the intensity with which an allele is either over-

or under-transmitted to subsequent generations [17]. Different magnitudes of TRD indicate

varying levels of penetrance and distinct degrees of linkage disequilibrium between the SNPs.

Table 1. Functional candidate genes identified in the regions of SNPs with TRD effect related to fertility and reproductive processes.

SNP ECA Gene Start gene

(bp)

End gene

(bp)

Related to Effect TRD

Affx-102676354 1 FGF8 28,438,020 28,444,877 regulation the ontogenesis of gonadotropin-

releasing hormone neurons

genotypic

TRD

Affx-102029138 2 SPATA5 105,297,868 105,607,119 spermatogenesis, sperm maturation and fertilization allelic TRD

Affx-101211136 8 SPIRE1 40,539,360 40,796,466 oocyte division allelic TRD

Affx-101258074 11 NOS2 42,217,308 42,253,897 regulation of female reproduction genotypic

TRD

Affx-102417813 12 RELA 29,516,708 29,556,026 endometrosis genotypic

TRD

Affx-101805908; Affx-101457011 13 PDPK1 41,420,452 41,494,281 Survival of primordial follicles and activation of

growing follicles.

allelic TRD

Affx-102696704; Affx-102783805; Affx-

101513893; Affx-101938833; Affx-101714029

20 BAG6 32,273,066 32,283,378 spermatogenesis, maintaining testicular cell survival

and testosterone biosynthesis

allelicTRD

20 HSPA1L 32,415,042 32,416,967 sperm and block fertilization allelic TRD

20 EHMT2 32,472,911 32,485,948 spermatogenesis and embryogenesis allelic TRD

20 MSH5 32,366,937 32,382,268 primary ovarian insufficiency and meiotic arrest at

stage IV of the spermatogenic cycle

allelic TRD

Affx-102804338 28 PDGFB 37,203,935 37,221,923 modulation the primordial to primary follicle

transition

genotypic

TRD

SNPs = single-nucleotide polymorphisms; ECA = equine chromosome; bp = base pairs; TRD = transmission ratio distortion

https://doi.org/10.1371/journal.pone.0289066.t001
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As a result, regions displaying strong TRD were found to be associated with SNPs that exhib-

ited high linkage disequilibrium with the underlying causal mutation. However, characterizing

genomic regions with TRD in horses is indeed a challenging task, particularly when compared

to species such as humans or cows. This difficulty arises due to the incomplete annotation of

the equine genome. Unlike cattle, there are fewer studies available that report on alleles, haplo-

types, mutations, and lethal genes [20, 40–43]. Consequently, the search for alleles and lethal

mutations within our regions, where SNPs exhibit the same TRD effect, has proven to be com-

plex thus far.

To ensure that our observed results are statistically significant, a Bayer Factor analysis was

performed [31]. In TRD analysis, this analysis measures the change in the odds in favor of the

model including TRD relative to the model with null TRD [6]. It is considered a measure of

the significance of the detected TRD, given its ability to simultaneously combine the magni-

tude of the TRD and the sample size of informative offspring [17]. Our results showed statisti-

cal evidence in favor of the model including TRD indicating decisive evidence (BF> 100)

according to [38] scale. In the allelic model, we observed that SNPs exhibiting both TRD (par-

ent-specific and -unspecific TRD) showed higher BF values for overall TRD than for stallion-

and/or dam-TRD. This might be because the detection of TRD is affected by the proportion of

informative parents, this is heterozygous stallions and mares [20]. On the other hand, 7 of the

36 SNPs with overall TRD exhibited mare-TRD effect and 8 displayed stallion TRD effect. This

demonstrates that overall TRD can also be captured as parent-specific TRD when sufficient

informative data are available for the specific parent. Remark that the model with parent-

unspecific TRD combines both sources of information (from stallions and mares) to estimate

an overall TRD. In addition, this may confirm the parental origin of TRD even though it was

identified as overall TRD. Previously, some studies have already reported the importance of

sex dependence in TRD on other species [7, 21, 44], pointing out that some biological mecha-

nisms causing TRD may be limited to one of the parental genders. Therefore, stallion-TRD

could provide evidence of TRD linked to factors influencing sperm or, alternatively, phenom-

ena of paternal impression. Likewise, mare-TRD could be linked to factors that affect ova fer-

tility or maternal imprint [18, 19].

It is important to mention that implementing and comparing different parameterizations

(genotypic and allelic) to capture all types of TRD [19], allows differentiating between the

diverse potential causes of TRD, from gamete formation in the parental generation to the via-

bility of the offspring. These parameterizations provide a tool to infer the biological source of

TRD, linking it to haploid (allelic) or diploid (genotypic) reproductive stages. Based on good-

ness-of-fit in terms of DIC, we compared the different TRD models. Models with lower DIC

values indicated a better fit and were considered statistically significant when the differences

between models were greater than 3 DIC units. Our results showed that a greater number of

regions fitted better to the allelic pattern than to the genotypic pattern. On the other hand, alle-

lic patterns could also be considered as an additive effect in the genotype of the offspring,

where the presence of the allele may cause a dosage effect and reduce the viability of the carrier

offspring [20]. The presence or absence of a specific allele independently of the homologue

may be sufficient to induce lethality and, as a result, generate TRD. We observed that certain

regions with allelic patterns showed an almost complete absence for homozygous individuals,

but also an underrepresentation of heterozygous offspring. Khatib et al. [45] and Id-Lahoucine

et al. [20] already observed these distortion patterns in their studies on reproduction in candi-

date regions and whole-genome cattle, respectively. As for the genotypic pattern, no regions

with classical recessive patterns were observed. Only heterosis (under- or over- representation

of heterozygous offspring) patterns were observed.
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Functional candidate genes identified in the regions with deviations from

mendelian expectations in horse

Functional annotation of candidate genes was performed for the 182 SNPs detected displaying

deviations from Mendelian inheritance on the autosomal horse chromosomes. A total of 296

genes were annotated in regions with allelic TRD and 138 genes in regions with genotypic

TRD. These positional genes located in TRD regions were examined to in deep investigate pos-

sible functional and molecular causes for the observed TRD. Functional analysis in both allelic-

and genotypic-TRD regions revealed significant functional categories and biological processes

related to histones, nucleosome and chromatin (“histone citrullination”; “heterochromatin

assembly”; “nucleosome assembly”; “nucleosomal DNA binding”) in which several genes were

involved. The role of histones in spermiogenesis is well known, a defect in histone substitution

or a modification could cause male infertility with azoospermia, oligospermia or teratozoos-

permia [46]. In turn, histone post-translational changes may have a major impact on chroma-

tin structure and gene expression in the developing embryo [47]. Another functional category

that plays a fundamental role in the development, behavior and reproduction of animals is that

related to odor perception (“sensory perception of smell”; “odorant binding”; “olfactory recep-

tor activity”) [48] [49, 50] where several genes are involved. Interestingly, significant functional

categories related to the immune system also appeared (“positive regulation of interleukin-6

production”; “innate immune response”). The immune system plays a critical role in fertiliza-

tion, in the process of implantation of the embryo in the uterus, in the establishment and

maintenance of pregnancy as well as in the testicular mechanism [51, 52]. Finally, another sig-

nificant biological process related to reproduction was lipid metabolism (“lipid transporter

activity”; “fatty acid omega-oxidation”). Different studies have suggested that an abnormal

high-density lipoproteins metabolism hinders female fertility [53, 54] and that cholesterol and

lipid homeostasis is important for male fecundity [55]. The genes associated with all these pro-

cesses are mapped in regions where different TRD patterns were identified.

A total of 11 functional candidate genes related to fertility were found. Among them, 7 were

associated with allelic TRD and 4 with genotypic TRD. The genes associated with female

reproduction in regions with allelic-TRD were: SPIRE1 and PDPK1.

The SPIRE1 gene was related to the oocyte division [56]. Remarkably, this gene was identi-

fied in a genome-wide association study focused on mare fertility [57]. Another gene also

found in this TRD study and in the association study on mare [57] was PDPK1 gene. The phos-

phoinositide dependent protein kinase 1 gene has been associated with premature ovarian fail-

ure due to a massive primordial follicle activation in the knockout mouse [58].

Regarding the genes related to male fertility (SPATA5, BAG6, HSPA1L, EHMT2). The

SPATA5 is a member of the ATPase associated with diverse activities protein superfamily,

which participates in mitochondrial morphogenesis during early spermatogenesis. This gene

was first identified in mouse testis as a spermatogenesis-associated factor, which might partici-

pate in regulating mitochondrial structural integrity during spermatogenesis. It has been sug-

gested that suppression of SPATA5 expression leads to reduced expression of the vitellogenin

gene, resulting in decreased fertility in males [59]. In addition, several studies have suggested

that increased methylation of SPATA5 may suppress its expression, which ultimately compro-

mises sperm production and thus male fertility [60, 61]. Remarkably, BAG6, HSPA1L and

EHMT2 genes are associated with the same region with TRD, and all are related to male fertil-

ity. Regarding, BCL2-associated athanogene 6 (BAG6) plays a critical role in spermatogenesis

by maintaining testicular cell survival [62] and in testosterone biosynthesis [63]. Another gene,

heat shock protein family A member 1 like (HSPA1L) is testes-specific heat shock protein and

is expressed strongly in the sperm. Some studies have shown that this specific protein can
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result in antibody accumulation from previous infections and can effectively block fertilization

[64]. However, recently, Wang et al. [65] revealed that HSPA1L is not essential for spermato-

genesis, nor is it involved in heat-induced stress responses. Lastly, the EHMT2 gene (also

known as G9a) is a mammalian H3K9 methyltransferase, has an important role in mouse sper-

matogenesis and is essential for embryogenesis by transcriptional silencing [66, 67].

Finally, the gene MSH5 related to male and female fertility was found. Mutations in MSH5
gene have been previously described in the context of female infertility due to primary ovarian

insufficiency [68]. But it was also described as a new gene in the context of male infertility

[69], since previous studies showed that mutations in gene involved in recombination such as

MSH5 gene cause meiotic arrest at stage IV of the spermatogenic cycle.

On the other hand, genes found in regions with genotypic TRD were: FGF8, NOS2, RELA
and PDGFB (female fertility). Fibroblast growth factor 8 (FGF8) regulates the ontogenesis of

gonadotropin-releasing hormone neurons, which control the hypothalamus-pituitary-gonadal

axis, and therefore reproductive success [70]. Many studies have shown that nitric oxide (NO)

plays important role in female reproduction. Indeed, a study provided evidence that thyroid

hormones dysregulation alters NOSs profiles, which suggested that NOSs/NO is possibly

involved in the regulation of female reproduction [71]. Recent studies have reported the rela-

tion of nuclear factor kappaB (NF-κB) with endometrosis, a serious problem that mainly

affects the fertility of older mares [72–74]. And one of the genes associated with a region with

TRD is the RELA gene that belongs to the subunits NF-κB. Regarding, PDGFB (platelet-

derived growth factor) gene has reported that modulates the primordial to primary follicle

transition, which is essential for female fertility [75, 76].

Conclusions

To our knowledge, this is the first extensive study to evaluate the presence of alleles with trans-

mission ratio distortion in the domestic horse. Our results revealed deviations from Mendelian

inheritance in 182 SNPs across the horse genome. Allelic (stallion- mare- parent-unspecific-

TRD) patterns predominated over genotypic patterns. And functional analyses showed that

the allelic and genotypic TRD regions identified in this study were associated with biological

processes and molecular functions related to spermatogenesis, oocyte division, embryonic

development, and hormonal activity. These findings contribute to a greater knowledge of TRD

in the equine species and a better understanding of allele transmission distortion and could

potentially be included in breeding programs with a major impact on the horse world. How-

ever, further studies with larger numbers of informative horse trios are needed to confirm

these TRD patterns and validate the candidate genes in other equine breeds.
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