112 research outputs found
Sea Surface Temperature of the mid-Piacenzian Ocean:A Data-Model Comparison
The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction
Pliocene Model Intercomparison Project Phase 3 (PlioMIP3) – Science plan and experimental design
The Pliocene Model Intercomparison Project (PlioMIP) was initiated in 2008. Over two phases PlioMIP has helped co-ordinate the experimental design and publication strategy of the community, which has included an increasing number of climate models and modelling groups from around the world. It has engaged with palaeoenvironmental scientists to foster new data synthesis supporting the construction of new model boundary conditions, as well as to facilitate new data-model comparisons. The work has advanced our understanding of Pliocene climates and environments, enhanced our knowledge regarding the ability of complex climate and Earth System models to accurately simulate climate change, and helped to refine our estimates of how sensitive the climate system is to forcing conditions.
In this community protocol paper, we outline the scientific plan for PlioMIP Phase 3 (PlioMIP3). This plan provides the required guidance to participating modelling groups from around the world to successfully set up and perform PlioMIP3 climate model experiments. The project is open to new participants from the scientific community (both from the climate modelling and geosciences communities).
In PlioMIP3, we retain the PlioMIP2 Core experiments (Eoi400, E280) and extend the Core requirements to include either an experiment focussed on the Early Pliocene or an alternative Late Pliocene simulation (or both). These additions (a) allow a comparison of Early and Late Pliocene warm intervals and help build research connections and synergy with the MioMIP (Miocene Model Intercomparison Project - also known as DeepMIP-Miocene) and PlioMioVAR projects (Pliocene-Miocene Variability Working Group), and (b) create an alternative time slice simulation for 3.205 Ma (MIS KM5c) through removal of some of the largest palaeogeographic differences introduced between PlioMIP1 and 2 resulting in minimal land-sea mask variations from the modern. In addition, we present ten optional experiments designed to enhance our assessment of climate sensitivity and to explore the uncertainty in greenhouse gas-related forcing. For the first time, we introduce orbital sensitivity experiments into the science plan, as well as simulations incorporating dynamic vegetation-climate feedbacks and an experiment designed to examine the potential significance of East Antarctic Ice Sheet boundary condition uncertainty. These changes enhance palaeo-to-future scientific connections and enable an exploration of the significance of palaeogeographic uncertainties on climate simulations
Planck early results III : First assessment of the Low Frequency Instrument in-flight performance
Peer reviewe
Planck early results. II. The thermal performance of Planck
The performance of the Planck instruments in space is enabled by their low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved
through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency
coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium
cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three
V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20 K), a 4He Joule-Thomson cooler (4.7 K),
and a 3He-4He dilution cooler (1.4 K and 0.1 K). The flight system was at ambient temperature at launch and cooled in space to operating
conditions. The HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the
rest of Planck, and operates at a mean temperature of 384 K. At the other end of the spacecraft, the telescope baffle operates at 42.3 K and the
telescope primary mirror operates at 35.9 K. The temperatures of key parts of the instruments are stabilized by both active and passive methods.
Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and
fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.
Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.
Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.
Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic.
Funding: Bill & Melinda Gates Foundation
- …