60 research outputs found

    Zeta functions on tori using contour integration

    Full text link
    A new, seemingly useful presentation of zeta functions on complex tori is derived by using contour integration. It is shown to agree with the one obtained by using the Chowla-Selberg series formula, for which an alternative proof is thereby given. In addition, a new proof of the functional determinant on the torus results, which does not use the Kronecker first limit formula nor the functional equation of the non-holomorphic Eisenstein series. As a bonus, several identities involving the Dedekind eta function are obtained as well

    αADα Hybrids of Cryptococcus neoformans: Evidence of Same-Sex Mating in Nature and Hybrid Fitness

    Get PDF
    Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, α and a. However, the overwhelming predominance of mating type (MAT) α over a in C. neoformans populations limits α–a mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between α isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural αADα hybrids that arose by fusion between two α cells of different serotypes (A and D) were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1α was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed αADα strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population

    Purine Biosynthesis Metabolically Constrains Intracellular Survival of Uropathogenic Escherichia coli

    Get PDF
    The ability to de novo synthesize purines has been associated with the intracellular survival of multiple bacterial pathogens. Uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections, undergoes a transient intracellular lifestyle during which bacteria clonally expand into multicellular bacterial communities within the cytoplasm of bladder epithelial cells. Here, we characterized the contribution of the conserved de novo purine biosynthesis-associated locus cvpA-purF to UPEC pathogenesis. Deletion of cvpA-purF, or of purF alone, abolished de novo purine biosynthesis but did not impact bacterial adherence properties in vitro or in the bladder lumen. However, upon internalization by bladder epithelial cells, UPEC deficient in de novo purine biosynthesis was unable to expand into intracytoplasmic bacterial communities over time, unless it was extrachromosomally complemented. These findings indicate that UPEC is deprived of purine nucleotides within the intracellular niche and relies on de novo purine synthesis to meet this metabolic requirement

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    Get PDF
    Tiina Paunio on työryhmän UK10K jäsen.The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.Peer reviewe

    A window into Zeta and modular physics

    No full text
    corecore