839 research outputs found
Exact discrete minimization for TV+L0 image decomposition models
International audiencePenalized maximum likelihood denoising approaches seek a solution that fulfills a compromise between data fidelity and agreement with a prior model. Penalization terms are generally chosen to enforce smoothness of the solution and to reject noise. The design of a proper penalization term is a difficult task as it has to capture image variability. Image decomposition into two components of different nature, each given a different penalty, is a way to enrich the modeling. We consider the decomposition of an image into a component with bounded variations and a sparse component. The corresponding penalization is the sum of the total variation of the first component and the L0 pseudo-norm of the second component. The minimization problem is highly non-convex, but can still be globally minimized by a minimum s-t-cut computation on a graph. The decomposition model is applied to synthetic aperture radar image denoising
Wall Slip of Soft-Jammed Systems: A Generic Simple Shear Process
International audienceFrom well-controlled long creep tests we show that the residual apparent yield stress observed with soft-jammed systems along smooth surfaces is an artefact due to edge effects. By removing these effects we can determine the stress solely associated with steady state wall slip below the material yield stress. This stress is found to vary linearly with the slip velocity for a wide range of materials whatever the structure, the interaction types between the elements and with the wall, and the concentration. Thus wall slip results from the laminar flow of some given free liquid volume remaining between the (rough) jammed structure formed by the elements, and the smooth wall. This phenomenon may be described by the simple shear flow in a Newtonian liquid layer of uniform thickness. For various systems this equivalent thickness varies in a narrow range (35 ± 15 nm)
Nucleotide-binding oligomerization domain-containing protein 2 (Nod2) modulates T1DM susceptibility by gut microbiota
Nucleotide-binding oligomerization domain-containing protein 2 (Nod2) is an innate immune receptor. To investigate the role of Nod2 in susceptibility to the autoimmune disease, type 1 diabetes mellitus (T1DM), we generated Nod2-/- non-obese diabetic (NOD) mice. The Nod2-/-NOD mice had different composition of the gut microbiota compared to Nod2+/+NOD mice and were significantly protected from diabetes, but only when housed separately from Nod2+/+NOD mice. This suggested that T1DM susceptibility in Nod2-/-NOD mice is dependent on the alteration of gut microbiota, which modulated the frequency and function of IgA-secreting B-cells and IL-10 promoting T-regulatory cells. Finally, colonizing germ-free NOD mice with Nod2-/-NOD gut microbiota significantly reduced pro-inflammatory cytokine-secreting immune cells but increased T-regulatory cells. Thus, gut microbiota modulate the immune system and T1D susceptibility. Importantly, our study raises a critical question about the housing mode in the interpretation of the disease phenotype of genetically-modified mouse strains in T1DM studies
Actinopolyspora algeriensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil
A halophilic actinomycete strain designated H19T, was isolated from a Saharan soil in the Bamendil region (Ouargla province, South Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the
strain were consistent with those of members of the genus
Actinopolyspora, and 16S rRNA gene sequence analysis confirmed that strain H19T was a novel species of the genus
Actinopolyspora. DNA–DNA hybridization value between strain H19T and the nearest Actinopolyspora species, A. halophila, was clearly below the 70 % threshold. The genotypic and phenotypic data showed that the organism represents a novel species of the genus Actinopolyspora for which the name Actinopolyspora algeriensis sp. nov. is proposed, with the type strain H19T (= DSM 45476T = CCUG 62415T)
Identifying Factors Influencing Attention in Adolescents with a Co-Created Questionnaire : A Citizen Science Approach with Secondary Students in Barcelona, Spain
Studies on factors that can influence attention in healthy adolescents are recent and focus on recurrent topics. Students' contribution to public health research often revolves around collecting data but rarely around creating data collection instruments. The ATENC!Ó project reunited secondary students and scientists to create a questionnaire including factors that students thought could affect their attention. We conducted a cross-sectional study to assess whether the factors included in this questionnaire had an effect on attention in adolescents. A total of 1667 students (13-16 years old) from 28 schools in Barcelona performed a validated attention test and answered the questionnaire. The response speed consistency (attentiveness), expressed as hit reaction time standard error (HRT-SE, in ms), was used as the primary outcome. Analyses were conducted using conditional linear regression with school as strata, adjusted for sociodemographic characteristics and further stratified by gender and maternal social class. Some factors showed a negative influence on attention, including taking medication and not reading regularly. We found a significant 14.3% (95% confidence interval: 3.4%, 25.3%) higher median of HRT-SE (increase inattentiveness) among students who reported not having a good relationship with classmates. Students' input into research is relevant for advancing the knowledge production in public health
Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea
Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
- …