21 research outputs found

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society

    Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission

    Get PDF
    Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16–20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Variation in life expectancy and mortality by cause among neighbourhoods in King County, WA, USA, 1990–2014: a census tract-level analysis for the Global Burden of Disease Study 2015

    No full text
    Background: Health outcomes are known to vary at both the country and local levels, but trends in mortality across a detailed and comprehensive set of causes have not been previously described at a very local level. Life expectancy in King County, WA, USA, is in the 95th percentile among all counties in the USA. However, little is known about how life expectancy and mortality from different causes of death vary at a local, neighbourhood level within this county. In this analysis, we estimated life expectancy and cause-specific mortality within King County to describe spatial trends, quantify disparities in mortality, and assess the contribution of each cause of death to overall disparities in all-cause mortality. Methods: We applied established so-called garbage code redistribution algorithms and small area estimation methods to death registration data for King County to estimate life expectancy, cause-specific mortality rates, and years of life lost (YLL) rates from 152 causes of death for 397 census tracts from Jan 1, 1990, to Dec 31, 2014. We used the cause list developed for the Global Burden of Disease 2015 study for this analysis. Deaths were tabulated by age group, sex, census tract, and cause of death. We used Bayesian mixed-effects regression models to estimate mortality overall and from each cause. Findings: Between 1990 and 2014, life expectancy in King County increased by 5·4 years (95% uncertainty interval [UI] 5·0–5·7) among men (from 74·0 years [73·7–74·3] to 79·3 years [79·1–79·6]) and by 3·4 years (3·0–3·7) among women (from 80·0 years [79·7–80·2] to 83·3 years [83·1–83·5]). In 2014, life expectancy ranged from 68·4 years (95% UI 66·9–70·1) to 86·7 years (85·0–88·2) for men and from 73·6 years (71·6–75·5) to 88·4 years (86·9–89·9) for women among census tracts within King County. Rates of YLL by cause also varied substantially among census tracts for each cause of death. Geographical areas with relatively high and relatively low YLL rates differed by cause. In general, causes of death responsible for more YLLs overall also contributed more significantly to geographical inequality within King County. However, certain causes contributed more to inequality than to overall YLLs. Interpretation: This census tract-level analysis of life expectancy and cause-specific YLL rates highlights important differences in health among neighbourhoods in King County that are masked by county-level estimates. Efforts to improve population health in King County should focus on reducing geographical inequality, by targeting those health conditions that contribute the most to overall YLLs and to inequality. This analysis should be replicated in other locations to more fully describe fine-grained local-level variation in population health and contribute to efforts to improve health while reducing inequalities. Funding: John W Stanton and Theresa E Gillespie

    Large birds travel farther in homogeneous environments

    Get PDF
    Aim: Animal movement is an important determinant of individual survival, population dynamics and ecosystem structure and function. Nonetheless, it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside the migratory period, we examined how the distribution of resources affects the movement patterns of both large terrestrial birds (e.g., raptors, bustards and hornbills) and waterbirds (e.g., cranes, storks, ducks, geese and flamingos). Location: Global. Time period: 2003–2015. Major taxa studied: Birds. Methods: We compiled GPS tracking data for 386 individuals across 36 bird species. We calculated the straight‐line distance between GPS locations of each individual at the 1‐hr and 10‐day time‐scales. For each individual and time‐scale, we calculated the median and 0.95 quantile of displacement. We used linear mixed‐effects models to examine the effect of the spatial arrangement of resources, measured as enhanced vegetation index homogeneity, on avian movements, while accounting for mean resource availability, body mass, diet, flight type, migratory status and taxonomy and spatial autocorrelation. Results: We found a significant effect of resource spatial arrangement at the 1‐hr and 10‐day time‐scales. On average, individual movements were seven times longer in environments with homogeneously distributed resources compared with areas of low resource homogeneity. Contrary to previous work, we found no significant effect of resource availability, diet, flight type, migratory status or body mass on the non‐migratory movements of birds. Main conclusions: We suggest that longer movements in homogeneous environments might reflect the need for different habitat types associated with foraging and reproduction. This highlights the importance of landscape complementarity, where habitat patches within a landscape include a range of different, yet complementary resources. As habitat homogenization increases, it might force birds to travel increasingly longer distances to meet their diverse needs.National Trust for Scotland; Penguin Foundation; The U.S. Department of Energy, Grant/Award Number: DE-EE0005362; Australian Research Council; NASA's Arctic Boreal Vulnerability Experiment (ABoVE), Grant/Award Number: NNX15AV92A; Netherlands Organization for Scientific Research, Grant/Award Number: VIDI 864.10.006; BCC; NSF Award, Grant/Award Number: ABI-1458748; U.K. Department for Energy and Climate Change; ‘Juan de la Cierva ‐ Incorporación’ postdoctoral grant; Irish Research Council, Grant/Award Number: GOIPD/2015/81 ; DECC; Goethe International Postdoctoral Programme, People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007‐2013/ under REA grant agreement no [291776]; German Aerospace Center Award, Grant/Award Number: 50JR1601; Scottish Natural Heritage; Solway Coast AONB Sustainable Development Fund; COWRIE Ltd.; Heritage Lottery Fund; Robert Bosch Stiftung; NSF Division of Biological Infrastructure Award, Grant/Award Number: 1564380; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: IJCI-2014-19190; Energinet.dk; NASA Award, Grant/Award Number: NNX15AV92A; MAVA Foundation; Fundação para a Ciência e Tecnologia, Grant/Award Number: SFRH/BPD/118635/2016; National Key R&D Program of China, Grant/Award Number: 2016YFC0500406; Green Fund of the Greek Ministry of Environmen
    corecore