1,373 research outputs found

    The NUHM2 after LHC Run 1

    Get PDF
    We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, mHu,d2m^2_{H_{u,d}}, vary independently from the universal soft SUSY-breaking contributions m02m^2_0 to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over 4×1084 \times 10^8 points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as their searches for supersymmetric jets + MET signals using the full LHC Run~1 data, the measurements of Bsμ+μB_s \to \mu^+ \mu^- by LHCb and CMS together with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared for squarks and sleptons, m02<0m_0^2 < 0, as well as mHu2<mHd2<0m^2_{H_u} < m^2_{H_d} < 0. The tension present in the CMSSM and NUHM1 between the supersymmetric interpretation of gμ2g_\mu - 2 and the absence to date of SUSY at the LHC is not significantly alleviated in the NUHM2. We find that the minimum χ2=32.5\chi^2 = 32.5 with 21 degrees of freedom (dof) in the NUHM2, to be compared with χ2/dof=35.0/23\chi^2/{\rm dof} = 35.0/23 in the CMSSM, and χ2/dof=32.7/22\chi^2/{\rm dof} = 32.7/22 in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.Comment: 20 pages latex, 13 figure

    The pMSSM10 after LHC Run 1

    Get PDF
    We present a frequentist analysis of the parameter space of the pMSSM10, in which the following 10 soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale Msusy = Sqrt[M_stop1 M_stop2]: the gaugino masses M_{1,2,3}, the 1st-and 2nd-generation squark masses M_squ1 = M_squ2, the third-generation squark mass M_squ3, a common slepton mass M_slep and a common trilinear mixing parameter A, the Higgs mixing parameter mu, the pseudoscalar Higgs mass M_A and tan beta. We use the MultiNest sampling algorithm with 1.2 x 10^9 points to sample the pMSSM10 parameter space. A dedicated study shows that the sensitivities to strongly-interacting SUSY masses of ATLAS and CMS searches for jets, leptons + MET signals depend only weakly on many of the other pMSSM10 parameters. With the aid of the Atom and Scorpion codes, we also implement the LHC searches for EW-interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the measurements B-physics observables, EW precision observables, the CDM density and searches for spin-independent DM scattering. We show that the pMSSM10 is able to provide a SUSY interpretation of (g-2)_mu, unlike the CMSSM, NUHM1 and NUHM2. As a result, we find (omitting Higgs rates) that the minimum chi^2/dof = 20.5/18 in the pMSSM10, corresponding to a chi^2 probability of 30.8 %, to be compared with chi^2/dof = 32.8/24 (31.1/23) (30.3/22) in the CMSSM (NUHM1) (NUHM2). We display 1-dimensional likelihood functions for SUSY masses, and show that they may be significantly lighter in the pMSSM10 than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e+e- colliders and direct detection experiments.Comment: 47 pages, 29 figure

    The Hadronic Contribution to the Muon Anomalous Magnetic Moment and to the Running Electromagnetic Fine Structure Constant at MZ - Overview and Latest Results

    Full text link
    Quantum loops induce an anomaly, a_mu, in the magnetic moment of the muon that can be accurately measured. Its Standard Model prediction is limited in precision by contributions from hadronic vacuum polarisation of the photon. The dominant lowest-order hadronic term can be calculated with a combination of experimental cross section data, involving e+e- annihilation to hadrons, and perturbative QCD. These are used to evaluate an energy-squared dispersion integral that strongly emphasises low photon virtualities. The dominant contribution to the integral stems from the two-pion channel that can be measured both in e+e- annihilation and in tau decays. The corresponding e+e- and tau-based predictions of a_mu exhibit deviations by, respectively, 3.6 sigma and 2.4 sigma from experiment, leaving room for a possible interpretation in terms of new physics. This talk reviews the status of the Standard Model prediction with emphasis on the lowest-order hadronic contribution. Also given is the latest result for the running electromagnetic fine structure constant at the Z-mass pole, whose precision is limited by hadronic vacuum polarisation contributions, determined in a way similar to those of the magnetic anomaly.Comment: Proceedings of talk at Tau2010 Workshop, Manchester, UK, 13-17 Sep, 2010; 10 pages, 8 figure

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay BK+B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process BK+B\to K\ell^+\ell^-, where +\ell^+\ell^- is either an e+ee^+e^- or μ+μ\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 Υ(4S)BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+ee^+e^- storage ring. Averaging over K()K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(BK+)=(0.650.13+0.14±0.04)×106{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(BK+)=(0.880.29+0.33±0.10)×106{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the BK+B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for BK+B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let

    Alternative angular variables for suppression of QCD multijet events in new physics searches with missing transverse momentum at the LHC

    Get PDF
    We introduce three alternative angular variables-denoted by ω~min\tilde{\omega}_\text{min}, ω^min\hat{\omega}_\text{min}, and χmin\chi_\text{min}-for QCD multijet event suppression in supersymmetry searches in events with large missing transverse momentum in proton-proton collisions at the LHC at CERN. In searches in all-hadronic final states in the CMS and ATLAS experiments, the angle Δφi\Delta\varphi_i, the azimuthal angle between a jet and the missing transverse momentum, is widely used to reduce QCD multijet background events with large missing transverse momentum, which is primarily caused by a jet momentum mismeasurement or neutrinos in hadron decays-the missing transverse momentum is aligned with a jet. A related angular variable-denoted by Δφmin\Delta\varphi^*_\text{min}, the minimum of the azimuthal angles between a jet and the transverse momentum imbalance of the other jets in the event-is used instead in a series of searches in all-hadronic final states in CMS to suppress QCD multijet background events to a negligible level. In this paper, before introducing the alternative variables, we review the variable Δφmin\Delta\varphi^*_\text{min} in detail and identify room for improvement, in particular, to maintain good acceptances for signal models with high jet multiplicity final states. Furthermore, we demonstrate with simulated event samples that ω^min\hat{\omega}_\text{min} and χmin\chi_\text{min} considerably outperform Δφmin\Delta\varphi^*_\text{min} and Δφi\Delta\varphi_i in rejecting QCD multijet background events and that ω^min\hat{\omega}_\text{min} and ω~min\tilde{\omega}_\text{min} are also useful for reducing the total standard model background events.Comment: 32 pages, 18 figure
    corecore