We present a frequentist analysis of the parameter space of the pMSSM10, in
which the following 10 soft SUSY-breaking parameters are specified
independently at the mean scalar top mass scale Msusy = Sqrt[M_stop1 M_stop2]:
the gaugino masses M_{1,2,3}, the 1st-and 2nd-generation squark masses M_squ1 =
M_squ2, the third-generation squark mass M_squ3, a common slepton mass M_slep
and a common trilinear mixing parameter A, the Higgs mixing parameter mu, the
pseudoscalar Higgs mass M_A and tan beta. We use the MultiNest sampling
algorithm with 1.2 x 10^9 points to sample the pMSSM10 parameter space. A
dedicated study shows that the sensitivities to strongly-interacting SUSY
masses of ATLAS and CMS searches for jets, leptons + MET signals depend only
weakly on many of the other pMSSM10 parameters. With the aid of the Atom and
Scorpion codes, we also implement the LHC searches for EW-interacting
sparticles and light stops, so as to confront the pMSSM10 parameter space with
all relevant SUSY searches. In addition, our analysis includes Higgs mass and
rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the
measurements B-physics observables, EW precision observables, the CDM density
and searches for spin-independent DM scattering. We show that the pMSSM10 is
able to provide a SUSY interpretation of (g-2)_mu, unlike the CMSSM, NUHM1 and
NUHM2. As a result, we find (omitting Higgs rates) that the minimum chi^2/dof =
20.5/18 in the pMSSM10, corresponding to a chi^2 probability of 30.8 %, to be
compared with chi^2/dof = 32.8/24 (31.1/23) (30.3/22) in the CMSSM (NUHM1)
(NUHM2). We display 1-dimensional likelihood functions for SUSY masses, and
show that they may be significantly lighter in the pMSSM10 than in the CMSSM,
NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e+e-
colliders and direct detection experiments.Comment: 47 pages, 29 figure