122 research outputs found

    Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation-including examples from the Norwegian Sea

    Get PDF
    The conditions permitting mantle serpentinization during continental rifting are explored within 2-D thermotectonostratigraphic basin models, which track the rheological evolution of the continental crust, account for sediment blanketing effects, and allow for kinetically controlled mantle serpentinization processes. The basic idea is that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Increased sedimentation rates shift this critical stretching factor to higher values as sediment blanketing effects result in higher crustal temperatures. Sediment supply has therefore, through the temperature-dependence of the viscous flow laws, strong control on crustal strength and mantle serpentinization reactions are only likely when sedimentation rates are low and stretching factors high. In a case study for the Norwegian margin, we test whether the inner lower crustal bodies (LCB) imaged beneath the Møre and Vøring margin could be serpentinized mantle. Multiple 2-D transects have been reconstructed through the 3-D data set by Scheck-Wenderoth and Maystrenko (2011). We find that serpentinization reactions are possible and likely during the Jurassic rift phase. Predicted thicknesses and locations of partially serpentinized mantle rocks fit to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may be partially serpentinized mantle

    Small rock-slope failures conditioned by Holocene permafrost degradation:a new approach and conceptual model based on Schmidt-hammer exposure-age dating, Jotunheimen, southern Norway

    Get PDF
    Rock-slope failures (RSFs) constitute significant natural hazards but the geophysical processes which control their timing are poorly understood. However, robust chronologies can provide valuable information on the environmental controls on RSF occurrence: information which can inform models of RSF activity in response to climatic forcing. This paper uses Schmidt-hammer exposure-age dating (SHD) of boulder deposits to construct a detailed regional Holocene chronology of the frequency and magnitude of small rock-slope failures (SRSFs) in Jotunheimen, Norway. By focusing on the depositional fans of SRSFs (≤ 103 m3), rather than on the corresponding features of massive RSFs (~108 m3), 92 single-event RSFs are targeted for chronology building. A weighted SHD age-frequency distribution and probability density function analysis indicate four centennial- to millennial-scale periods of enhanced SRSF frequency, with a dominant mode at ~4.5 ka. Using change detection and discreet Meyer wavelet analysis, in combination with existing permafrost depth models, we propose that enhanced SRSF activity was primarily controlled by permafrost degradation. Long-term relative change in permafrost depth provides a compelling explanation for the high-magnitude departures from the SRSF background rate and accounts for (i1) the timing of peak SRSF frequency, (2ii) the significant lag (~2.2 ka) between the Holocene Thermal Maximum and the SRSF frequency peak, and (3iii) the marked decline in frequency in the late-Holocene. This interpretation is supported by geomorphological evidence, as the spatial distribution of SRSFs is strongly correlated with the aspect-dependent lower altitudinal limit of mountain permafrost in cliff faces. Results are indicative of a causal relationship between episodes of relatively warm climate, permafrost degradation and the transition to a seasonal-freezing climatic regime. This study highlights permafrost degradation as a conditioning factor for cliff collapse, and hence the importance of paraperiglacial processes; a result with implications for slope instability in glacial and periglacial environments under global warming scenarios

    Mantle convection and the state of the Earth's interior

    Full text link
    • …
    corecore