576 research outputs found
Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots
The Louisville Seamount Trail is a 4300 km long volcanic chain that has been built in the past 80 m.y. as the Pacific plate moved over a persistent mantle melting anomaly or hotspot. Because of its linear morphology and its long-lived age-progressive volcanism, Louisville is the South Pacific counterpart of the much better studied Hawaiian-Emperor Seamount Trail. Together, Louisville and Hawaii are textbook examples of two primary hotspots that have been keystones in deciphering the motion of the Pacific plate relative to a set of "fixed" deep-mantle plumes. However, drilling during Ocean Drilling Program (ODP) Leg 197 in the Emperor Seamounts documented a large ~15° southward motion of the Hawaiian hotspot prior to 50 Ma. Is it possible that the Hawaiian and Louisville hotspots moved in concert and thus constitute a moving reference frame for modeling plate motion in the Pacific? Alternatively, could they have moved independently, as predicted by mantle flow models that reproduce the observed latitudinal motion for Hawaii but that predict a largely longitudinal shift for the Louisville hotspot? These two end-member geodynamic models were tested during Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamount Trail.
In addition, existing data from dredged lavas suggest that the mantle plume source of the Louisville hotspot has been remarkably homogeneous for as long as 80 m.y. These lavas are predominantly alkali basalts and likely represent a mostly alkalic shield-building stage, which is in sharp contrast to the massive tholeiitic shield-building stage of Hawaiian volcanoes. Geochemical and isotopic data for the recovered lavas during Expedition 330 will provide insights into the magmatic evolution and melting processes of individual Louisville volcanoes, their progression from shield-building to postshield and (maybe) posterosional stages, the temperature and depth of partial melting of their mantle plume source, and the enigmatic long-lived and apparent geochemical homogeneity of the Louisville mantle source. Collectively, this will enable us to characterize the Louisville Seamount Trail as a product of one of the few global primary hotspots, to better constrain its plume-lithosphere interactions, and to further test the hypothesis that the Ontong Java Plateau formed from the plume head of the Louisville mantle plume around 120 Ma.
During Expedition 330 we replicated the drilling strategy of Leg 197, the first expedition to provide compelling evidence for the motion of the Hawaiian mantle plume between 80 and 50 Ma. For that reason we targeted Louisville seamounts that have ages similar to Detroit, Suiko, Nintoku, and Koko Seamounts in the Emperor Seamount Trail. In total, five seamounts were drilled in the Louisville Seamount Trail: Canopus, Rigil, Burton, Achernar, and Hadar Guyots (old to young). By analyzing a large number of time-independent in situ lava flows (and other volcanic eruptive products) from these seamounts using modern paleomagnetic, 40Ar/39Ar geochronological, and geochemical techniques, we will be able to directly compare the paleolatitude estimates and geochemical signatures between the two longest-lived hotspot systems in the Pacific Ocean.
We drilled into the summits of the five Louisville guyots and reached volcanic basement at four of these drilling targets. In two cases we targeted larger seamount structures and drilled near the flanks of these ancient volcanoes, and in the other three cases we selected smaller edifices that we drilled closer to their centers. Drilling and logging plans for each of these sites were similar, with coring reaching 522.0 meters below seafloor (mbsf) for Site U1374 and 232.9, 65.7, 11.5, 182.8, and 53.3 mbsf for Sites U1372, U1373, U1375, U1376, and U1377, respectively. Some Expedition 330 drill sites were capped with only a thin layer of pelagic ooze between 6.6 and 13.5 m thick, and, if present, these were cored by using a low-rotation gravity-push technique with the rotary core barrel to maximize recovery. However, at Sites U1373 and U1376 no pelagic ooze was present, and the holes needed to be started directly into cobble-rich hardgrounds. In all cases, the bulk of the seamount sediment cover comprised sequences of volcanic sandstones and various kinds of basalt breccia or basalt conglomerate, which often were interspersed with basaltic lava flows, the spatter/tephra products of submarine eruptions, or other volcanic products, including auto-brecciated flows or peperites. Also several intervals of carbonate were cored, with the special occurrence of a ~15 m thick algal limestone reef at Site U1376 on Burton Guyot. In addition, some condensed pelagic limestone units were recovered on three of the other seamounts, but these did not exceed 30 cm in thickness. Despite their limited presence in the drilled sediment, these limestones provide valuable insights for the paleoclimate record at high ~50° southern latitudes since Mesozoic times.
Several Louisville sites progressed from subaerial conditions in the top of volcanic basement into submarine eruptive environments, or drilling of the igneous basement immediately started in submarine volcanic sequences, as was the case for Sites U1376 and U1377 on Burton and Hadar Guyots. At three sites we cored >100 m into the igneous basement: 187.3 m at Site U1372, 505.3 m at Site U1374, and 140.9 m at Site U1376. At the other sites we did not core into basement (Site U1375) or we cored only 38.2 m (Site U1377) because of unstable hole conditions. Even so, drilling during Expedition 330 resulted in a large number of in situ lava flows, pillow basalts, or other types of volcanic products such as auto-brecciated lava flows, intrusive sheets or dikes, and peperites. In particular, the three holes on Canopus and Rigil Guyots (the two oldest seamounts drilled in the Louisville Seamount Trail), resulted in adequate numbers of in situ lava flows to average out paleosecular variation, with probable eruption ages estimated at ~78 and 73 Ma, respectively. Remarkably, at all drill sites large quantities of hyaloclastites, volcanic sandstones, and basaltic breccias were also recovered, which in many cases show consistent paleomagnetic inclinations compared to the lava flows bracketing these units. For Site U1374 on Rigil Guyot we also observed a magnetic polarity reversal in the cored sequence. Overall, this is very promising for determining a reliable paleolatitude record for the Louisville Seamounts following detailed postcruise examinations.
The deeper penetrations of several hundred meters required bit changes and reentries using free-fall funnels. Basement penetration rates were 1.8–2.5 m/h depending on drill depth. In total, 1114 m of sediment and igneous basement at five seamounts was drilled, and 806 m was recovered (average recovery = 72.4%). At Site U1374 on Rigil Guyot, a total of 522 m was drilled, with a record-breaking 87.8% recovery. Most outstandingly, nearly all Expedition 330 core material is characterized by low degrees of alteration, providing us with a large quantity of samples of mostly well-preserved basalt, containing, for example, pristine olivine crystals with melt inclusions, fresh volcanic glass, unaltered plagioclase, carbonate, zeolite and celadonite alteration minerals, various micro- and macrofossils, and, in one case, mantle xenoliths and xenocrysts. The large quantity and excellent quality of the recovered sample material allow us to address all the scientific objectives of this expedition and beyond
High intensity neutrino oscillation facilities in Europe
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
Blaming Active Volcanoes or Active Volcanic Blame? Volcanic Crisis Communication and Blame Management in the Cameroon
This chapter examines the key role of blame management and avoidance in crisis communication with particular reference to developing countries and areas that frequently experience volcanic episodes and disasters. In these contexts, the chapter explores a key paradox prevalent within crisis communication and blame management concepts that has been rarely tested in empirical terms (see De Vries 2004; Brändström 2016a). In particular, the chapter examines, what it calls, the ‘paradox of frequency’ where frequency of disasters leads to twin dispositions for crisis framed as either: (i) policy failure (active about volcanic blame on others), where issues of blame for internal incompetency takes centre stage, and blame management becomes a focus of disaster managers, and/or: (ii) as event failure (in this case, the blaming of lack of external capacity on active volcanoes and thereby the blame avoidance of disaster managers). Put simply, the authors investigate whether perceptions of frequency itself is a major determinant shaping the existence, operation, and even perceived success of crisis communication in developing regions, and countries experiencing regular disaster episodes. The authors argue frequency is important in shaping the behaviour of disaster managers and rather ironically as part of crisis communication can shape expectations of community resilience and (non)-compliance. In order to explore the implications of the ‘paradox of frequency’ further, the chapter examines the case of the Cameroon, where volcanic activity and events have been regular, paying particular attention to the major disasters in 1986 (Lake Nyos Disaster - LND) and 1999 (Mount Cameroon volcanic eruption - MCE)
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
GFS, a preparation of Tasmanian Undaria pinnatifida is associated with healing and inhibition of reactivation of Herpes
BACKGROUND: We sought to assess whether GFS, a proprietary preparation of Tasmanian Undaria pinnatifida, has effects on healing or re-emergence of Herpetic infections, and additionally, to assess effects of GFS in vitro. Undaria is the most commonly eaten seaweed in Japan, and contains sulphated polyanions and other components with potential anti-viral activity. Herpes simplex virus type 1 (HSV-1) infections have lower reactivation rates and Herpes type 2 (HSV-2) infections have lower incidence in Japan than in the west. METHODS: Patients with active (15 subjects) or latent (6 subjects) Herpetic infections (HSV-1, 2, EBV, Zoster) were monitored for response to ingestion of GFS. GFS extract was tested in vitro for human T cell mitogenicity and anti-Herpes activity. RESULTS: Ingestion of GFS was associated with increased healing rates in patients with active infections. In addition, patients with latent infection remained asymptomatic whilst ingesting GFS. GFS extract inhibited Herpes viruses in vitro and was mitogenic to human T cells in vitro. CONCLUSIONS: Ingestion of GFS has inhibitory effects on reactivation and is associated with increased rate of healing after Herpetic outbreaks. GFS extract potently inhibited Herpes virus in vitro, and had mitogenic effects on human T cells
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Stakeholder-driven transformative adaptation is needed for climate-smart nutrition security in sub-Saharan Africa - author correction
oai:repository.rothamsted.ac.uk:99048Improving nutrition security in sub-Saharan Africa under increasing climate risks and population growth requires a strong and contextualized evidence base. Yet, to date, few studies have assessed climate-smart agriculture and
nutrition security simultaneously. Here we use an integrated assessment framework (iFEED) to explore stakeholder-driven scenarios of food system transformation towards climate-smart nutrition security in Malawi, South Africa, Tanzania and Zambia. iFEED translates climate–food–emissions
modelling into policy-relevant information using model output implication statements. Results show that diversifying agricultural production towards more micronutrient-rich foods is necessary to achieve an adequate population-level nutrient supply by mid-century. Agricultural areas must expand unless unprecedented rapid yield improvements are achieved. While these transformations are challenging to accomplish and often
associated with increased greenhouse gas emissions, the alternative for a nutrition-secure future is to rely increasingly on imports, which would outsource emissions and be economically and politically challenging given the large import increases required
How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot
Increasingly, spatial geochemical zonation, present as geographically distinct, subparallel
trends, is observed along hotspot tracks, such as Hawaii and the Galapagos. The origin of this
zonation is currently unclear. Recently zonation was found along the last B70 Myr of the
Tristan-Gough hotspot track. Here we present new Sr–Nd–Pb–Hf isotope data from the older
parts of this hotspot track (Walvis Ridge and Rio Grande Rise) and re-evaluate published data
from the Etendeka and Parana flood basalts erupted at the initiation of the hotspot track. We
show that only the enriched Gough, but not the less-enriched Tristan, component is present in
the earlier (70–132 Ma) history of the hotspot. Here we present a model that can explain the
temporal evolution and origin of plume zonation for both the Tristan-Gough and Hawaiian
hotspots, two end member types of zoned plumes, through processes taking place in the
plume sources at the base of the lower mantle
Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family
Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution
- …