444 research outputs found

    Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    Get PDF
    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and CTD data. Surface current velocity, divergence, and upwelling velocity were derived from ship drift reports. Surface wind velocity, wind stress, wind divergence, wind stress curl, and Ekman pumping velocity were derived from gridded pseudostress data obtained from Florida State University. Seasonal maps of these variables, and their deviations from the annual mean, show different patterns of variation in Equatorial (S°S-SON) and Tropical Surface Water (SOlS0N). Seasonal shifts in the trade winds, which affect the strength of equatorial upwelling and the North Equatorial Countercurrent, cause seasonal variations in most variables. Seasonal and interannual variability of surface temperature, mixed layer depth, thermocline depth and wind stress were quantified. Surface temperature, mixed layer depth and thermocline depth, but not local wind stress, are less variable in Tropical Surface Water than in Equatorial Surface Water. Seasonal and interannual variability are close to equal in most of the ETP, within factors of 2 or less. (PDF file contains 70 pages.

    Water Masses and Circulation in the Tropical Pacific off Central Mexico and Surrounding Areas

    Get PDF
    13 páginas, 8 figuras, 2 tablasThe seasonal variations and the interactions of the water masses in the tropical Pacific off central Mexico (TPCM) and four surrounding areas were examined based on an extensive new hydrographic database. The regional water masses were redefined in terms of absolute salinity (SA) and conservative temperature (Θ) according to the Thermodynamic Equation of Seawater 2010 (TEOS-10). Hydrographic data and the evaporation minus (precipitation + runoff) balance were used to investigate the origin and seasonality of two salinity minima in the area. The shallow (50–100 m) salinity minimum originates with the California Current System and becomes saltier as it extends southeastward and mixes with tropical subsurface waters while the surface salinity minimum extends farther north in the TPCM in summer and fall because of the northward advection of tropical surface waters. The interactions between water masses allow a characterization of the seasonal pattern of circulation of the Mexican Coastal Current (MCC), the tropical branch of the California Current, and the flows through the entrance of the Gulf of California. The seasonality of the MCC inferred from the distribution of the water masses largely coincides with the geostrophic circulation forced by an annual Rossby waveThis is a product of the project CONACyT (SEP2011–168034-T), with collaboration from the following sources: CONACyT Projects 168034-T, T-9201, 4271P-T, 38797-T, 26653-T, 1076-T9201, 4271PT9601, C01–25343; 38834-T, C02-44870F,G34601-S, and 103898; Naval Postgraduate School; NOC-US; NOAA (GC04– 219); and the regular UABC budget through Projects 4009, 4015, 0324, 0333, and 0352. Funding came from CONACyT, México through the Grant 1329234 for the Ph.D. studies of Esther PortelaPeer reviewe

    Transplantation of Renal Allografts From Organ Donors Reactive for HCV Antibodies to HCV-Negative Recipients: Safety and Clinical Outcome

    Get PDF
    IntroductionBecause of the shortage of available organs for renal transplantation, strategies enabling the safe use of organs from donors with potential chronic infections such as hepatitis C are necessary. The aim of this study was to analyze the outcome of renal transplant donation from hepatitis C virus (HCV)-positive donors.MethodsBetween September 2002 and May 2007, 51 kidneys (34 donors) reactive for HCV antibodies were further evaluated. Six kidneys (5 donors) were transplanted to 6 recipients with known chronic HCV infection. The remaining 29 donors underwent extended virological testing. Nine donors were HCV RNA positive and thus not suitable for HCV-negative patients. Twenty donors (21 kidneys) did not have detectable HCV RNA copies and were transplanted into 21 HCV-negative recipients. Clinical outcomes focusing on safety, allograft function, and de novo HCV infection in the recipient were collected.ResultsThere were no de novo HCV infections detected in recipients who were HCV negative before transplantation. The extended virological donor screening did not have an impact on median cold ischemia time. Five-year graft survival was 75%.DiscussionOrgans from anti-HCV-reactive, nonviremic donors can be transplanted safely to HCV-negative recipients

    Rapid Analysis of Listeria monocytogenes Cell Wall Teichoic Acid Carbohydrates by ESI-MS/MS

    Get PDF
    We report the application of electrospray ionization (ESI) mass spectrometry for compositional characterization of wall teichoic acids (WTA), a major component of Gram-positive bacterial cell walls. Tandem mass spectrometry (ESI-MS/MS) of purified and chemically hydrolyzed monomeric WTA components provided sufficient information to identify WTA monomers and their specific carbohydrate constituents. A lithium matrix was used for ionization of uncharged WTA monomers, and successfully applied to analyze the WTA molecules of four Listeria strains differing in carbohydrate substitution on a conserved polyribitol-phosphate backbone structure. Carbohydrate residues such as N-acetylglucosamine or rhamnose linked to the WTA could directly be identified by ESI-MS/MS, circumventing the need for quantitative analysis by gas chromatography. The presence of a terminal N-acetylglucosamine residue tethered to the ribitol was confirmed using fluorescently labeled wheat-germ agglutinin. In conclusion, the mass spectrometry method described here will greatly facilitate compositional analysis and characterization of teichoic acids and similar macromolecules from diverse bacterial species, and represents a significant advance in the identification of serovar-specific carbohydrates and sugar molecules on bacteria

    Cosmological Constraints on f(G)f(G) Dark Energy Models

    Get PDF
    Modified gravity theories with the Gauss-Bonnet term G=R24RμνRμν+RμνρσRμνρσG=R^2-4R^{\mu\nu}R_{\mu\nu}+R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} have recently gained a lot of attention as a possible explanation of dark energy. We perform a thorough phase space analysis on the so-called f(G)f(G) models, where f(G)f(G) is some general function of the Gauss-Bonnet term, and derive conditions for the cosmological viability of f(G)f(G) dark energy models. Following the f(R)f(R) case, we show that these conditions can be nicely presented as geometrical constraints on the derivatives of f(G)f(G). We find that for general f(G)f(G) models there are two kinds of stable accelerated solutions, a de Sitter solution and a phantom-like solution. They co-exist with each other and which solution the universe evolves to depends on the initial conditions. Finally, several toy models of f(G)f(G) dark energy are explored. Cosmologically viable trajectories that mimic the Λ\LambdaCDM model in the radiation and matter dominated periods, but have distinctive signatures at late times, are obtained.Comment: 17 pages, 3 figures; typos correcte

    Protostellar collapse and fragmentation using an MHD GADGET

    Full text link
    Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics (SPH) method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsical difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss & Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case, where previously only formation of a single protostar was expected.Comment: 18 pages, 11 figures. Final version (with revisions). Accepted to MNRA

    Processing of cloud condensation nuclei by collision-coalescence in a mesoscale model

    Get PDF
    This is the publisher's version, also available electronically from http://onlinelibrary.wiley.com/doi/10.1029/2006JD007183/abstract.The Naval Research Laboratory's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is employed to explore the relative importance of source, sink, and transport processes in producing an accurate forecast of the aerosol-cloud-drizzle system. Cloud processing, defined to be the reduction of cloud condensation nuclei (CCN) via collision-coalescence, is not uniquely related to total particle concentration, a behavior which stems from the roughly inverse dependence on cloud droplet concentration between autoconversion and accretion depletion terms. Instead, the behavior of cloud processing in COAMPS suggests relationships (scalings) based on cloud base drizzle rate (R) and cloud droplet concentration (Nc). Cloud processing is found to be correlated with drizzle, a relationship that can be represented as a power law for drizzle rates less than 0.6 mm d−1. A scaling for cloud processing based on the product of Nc and R is accurate over a wider range of drizzle rates. Results from large eddy simulation with size-resolved microphysical processes demonstrate reasonable agreement with COAMPS and the two parameter scaling. Entrainment plays an important role in strongly modulating the mean marine boundary layer (MBL) concentration, both increasing and decreasing CCN, depending upon the entrainment velocity we and the difference between MBL and free tropospheric CCN concentrations. The importance of entrainment suggests that transport processes, especially in the vertical, play a fundamental role in the overall MBL CCN balance. In situ sources rates of CCN, taken to represent heterogeneous chemical processes and sea salt flux of submicron size particles from the ocean surface, must be unrealistically large in order to be of the same magnitude as cloud processing. Because of the prevailing importance of cloud processing and entrainment over timescales of a typical mesoscale forecast, we argue that incorporating accurate vertical aerosol profiles into the model update cycles, either from remote sensing or from global chemistry models, is more important than highly constrained local CCN source rates

    VAST: An ASKAP Survey for Variables and Slow Transients

    Get PDF
    The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.Comment: 29 pages, 8 figures. Submitted for publication in Pub. Astron. Soc. Australi

    Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays

    Get PDF
    Bose-Einstein Correlations (BEC) of three identical charged pions were studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations, corrected for the Coulomb effect, were separated from the known two-pion correlations by a new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold was observed having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029 (syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041 (syst.). The Coulomb correction was found to increase the \lambda_3 value by \~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of 0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the three-pion sample purity. A relation between the two-pion and the three-pion source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.
    corecore