61 research outputs found

    From Tones in Tinnitus to Sensed Social Interaction in Schizophrenia: How Understanding Cortical Organization Can Inform the Study of Hallucinations and Psychosis

    Get PDF
    The content, modality, and perceptual attributes of hallucinations and other psychotic symptoms may be related to neural representation at a single cell and population level in the cerebral cortex. A brief survey of some principles and examples of cortical representation and organization will be presented together with evidence for a correspondence between the neurobiology of brain areas activated at the time of a hallucination and the content of the corresponding hallucinatory and psychotic experiences. Contrasting the hallucinations of schizophrenia with other conditions, we highlight phenomenological aspects of hallucinations that are ignored in clinical practice but carry potentially important information about the brain regions and dysfunctions underlying them. Knowledge of cortical representation and organization are being used to develop animal models of hallucination and to test treatments that are now beginning to translate to the clinical domain

    Negative outcome Charles Bonnet Syndrome

    Get PDF
    BACKGROUND: Charles Bonnet Syndrome (CBS) is widely considered a transient condition without adverse consequence, questioning the need for treatment. Yet, while this view may be true of the majority of people with CBS, it is recognised that some have negative experiences and outcomes. Here, we attempt to better understand negative outcome CBS and the factors that influence it. METHODS: 4000 members of the Macular Society were sent a structured questionnaire covering the phenomenology of CBS, its prognosis and impact, symptom reporting, patient knowledge and sources of information. RESULTS: 492 people with CBS were identified. Kaplan–Meier analysis suggested 75% had CBS for 5 years or more. Thirty-two per cent had negative outcome. Factors associated with negative outcome were: (1) frequent, fear-inducing, longer-lasting hallucination episodes, (2) one or more daily activities affected, (3) attribution of hallucinations to serious mental illness, (4) not knowing about CBS at the onset of symptoms. Duration of CBS or the type of content hallucinated were not associated with negative outcome. CONCLUSIONS: CBS is of longer duration than previously suspected with clinically relevant consequences in a third of those affected. Interventions that reduce the frequency, duration or fear of individual hallucination episodes and education prior to hallucination onset may help reduce negative outcome

    A Novel Method for Reducing the Effect of Tonic Muscle Activity on the Gamma Band of the Scalp EEG

    Get PDF
    Neural oscillations in the gamma band are of increasing interest, but separating them from myogenic electrical activity has proved difficult. A novel algorithm has been developed to reduce the effect of tonic scalp and neck muscle activity on the gamma band of the EEG. This uses mathematical modelling to fit individual muscle spikes and then subtracts them from the data. The method was applied to the detection of motor associated gamma in two separate groups of eight subjects using different sampling rates. A reproducible increase in high gamma (65–85 Hz) magnitude occurred immediately after the motor action in the left central area (p = 0.02 and p = 0.0002 for the two cohorts with individually optimized algorithm parameters, compared to p = 0.03 and p = 0.16 before correction). Whilst the magnitude of this event-related gamma synchronisation was not reduced by the application of the EMG reduction algorithm, the baseline left central gamma magnitude was significantly reduced by an average of 23 % with a faster sampling rate (p < 0.05). In comparison, at left and right temporo-parietal locations the gamma amplitude was reduced by 60 and 54 % respectively (p < 0.05). The reduction of EMG contamination by fitting and subtraction of individual spikes shows promise as a method of improving the signal to noise ratio of high frequency neural oscillations in scalp EEG

    Neural changes following cognitive behaviour therapy for psychosis: a longitudinal study

    Get PDF
    A growing body of evidence demonstrates that persistent positive symptoms, particularly delusions, can be improved by cognitive behaviour therapy for psychosis. Heightened perception and processing of threat are believed to constitute the genesis of delusions. The present study aimed to examine functional brain changes following cognitive behaviour therapy for psychosis. The study involved 56 outpatients with one or more persistent positive distressing symptoms of schizophrenia. Twenty-eight patients receiving cognitive behaviour therapy for psychosis for 6–8 months in addition to their usual treatment were matched with 28 patients receiving treatment as usual. Patients’ symptoms were assessed by a rater blind to treatment group, and they underwent functional magnetic resonance imaging during an affect processing task at baseline and end of treatment follow-up. The two groups were comparable at baseline in terms of clinical and demographic parameters and neural and behavioural responses to facial and control stimuli. The cognitive behaviour therapy for psychosis with treatment-as-usual group (22 subjects) showed significant clinical improvement compared with the treatment-as-usual group (16 subjects), which showed no change at follow-up. The cognitive behaviour therapy for psychosis with treatment-as-usual group, but not the treatment-as-usual group, showed decreased activation of the inferior frontal, insula, thalamus, putamen and occipital areas to fearful and angry expressions at treatment follow-up compared with baseline. Reduction of functional magnetic resonance imaging response during angry expressions correlated directly with symptom improvement. This study provides the first evidence that cognitive behaviour therapy for psychosis attenuates brain responses to threatening stimuli and suggests that cognitive behaviour therapy for psychosis may mediate symptom reduction by promoting processing of threats in a less distressing way

    Beyond Dopamine: Functional MRI Predictors of Responsiveness to Cognitive Behaviour Therapy for Psychosis

    Get PDF
    Despite the favourable effects of antipsychotics on positive symptoms of schizophrenia, many patients continue to suffer from distressing symptoms. Additional benefits of cognitive behaviour therapy for psychosis (CBTp) have been reported for approximately 50% of such patients. Given the role of left hemisphere-based language processes in responsiveness to CBT for depression, and language pathway abnormalities in psychosis, this study examined whether pre-therapy brain activity during a verbal monitoring task predicts CBTp responsiveness in schizophrenia. Fifty-two outpatients, stable on antipsychotics with at least one persistent distressing positive symptom and wishing to receive CBTp adjunctive to their treatment-as-usual, and 20 healthy participants underwent fMRI during monitoring of self- and externally-generated (normal and distorted) speech. Subsequently, 26 patients received CBTp for 6–8 months adjunctive to their treatment-as-usual (CBTp + TAU, 20 completers), and 26 continued with their treatment-as-usual (TAU-alone, 18 completers). Symptoms were assessed (blindly) at entry and follow-up. The CBTp + TAU and TAU-alone groups had comparable demographic characteristics, performance and baseline symptoms. Only the CBTp + TAU group showed improved symptoms at follow-up. CBTp responsiveness was associated with (i) greater left inferior frontal gyrus (IFG) activity during accurate monitoring, especially of own voice, (ii) less inferior parietal deactivation with own, relative to others’, voice, and (iii) less medial prefrontal deactivation and greater thalamic and precuneus activation during monitoring of distorted, relative to undistorted, voices. CBTp + TAU patients, on average, displayed left IFG and thalamic hypo-activation (<healthy participants). The findings implicate language processing (IFG), attention (thalamus), insight and self-awareness (medial prefrontal and parietal cortices) in CBTp responsiveness in schizophrenia

    Transcranial direct current stimulation in the treatment of visual hallucinations in Charles Bonnet syndrome: A randomized placebo-controlled crossover trial.

    Get PDF
    Objective To investigate the potential therapeutic benefits and tolerability of inhibitory transcranial direct current stimulation (tDCS) on the remediation of visual hallucinations in Charles Bonnet Syndrome (CBS). Design Randomized, double-masked(blind), placebo-controlled crossover trial. Participants Sixteen individuals diagnosed with CBS secondary to visual impairment caused by eye disease experiencing recurrent visual hallucinations. Intervention All participants received four consecutive days of active and placebo cathodal stimulation (current density: 0.29mA/cm2) to the visual cortex (Oz) over two defined treatment weeks, separated by a four-week wash-out period. Main Outcome Measures Ratings of visual hallucination frequency and duration following active and placebo stimulation, accounting for treatment order, using a 2x2 repeated measures model. Secondary outcomes included impact ratings of visual hallucinations and electrophysiological measures. Results When compared to placebo treatment, active inhibitory stimulation of visual cortex resulted in a significant reduction in the frequency of visual hallucinations measured by the North East Visual Hallucinations Interview, with a moderate-to-large effect size. Impact measures of visual hallucinations improved in both placebo and active conditions suggesting support and education for CBS may have therapeutic benefits. Participants who demonstrated greater occipital excitability on electroencephalography assessment at the start of treatment were more likely to report a positive treatment response. Stimulation was found to be tolerable in all participants with no significant adverse effects reported, including no deterioration in pre-existing visual impairment. Conclusions Findings indicate that inhibitory tDCS of visual cortex may reduce the frequency of visual hallucinations in people with CBS, particularly individuals who demonstrate greater occipital excitability prior to stimulation. tDCS may offer a feasible, novel intervention option for CBS with no significant side effects, warranting larger scale clinical trials to further characterize its efficacy

    Investigation of structural brain changes in Charles Bonnet Syndrome

    Get PDF
    Background and objectives In Charles Bonnet Syndrome (CBS), visual hallucinations (VH) are experienced by people with sight loss due to eye disease or lesional damage to early visual pathways. The aim of this cross-sectional study was to investigate structural brain changes using magnetic resonance imaging (MRI) in CBS. Methods Sixteen CBS patients, 17 with eye disease but no VH, and 19 normally sighted people took part. Participants were imaged on a 3T scanner, with 1 mm resolution T1 weighted structural imaging, and diffusion tensor imaging with 64 diffusion directions. Results The three groups were well matched for age, sex and cognitive scores (MMSE). The two eye disease groups were matched on visual acuity. Compared to the sighted controls, we found reduced grey matter in the occipital cortex in both eye disease groups. We also found reductions of fractional anisotropy and increased diffusivity in widespread areas, including occipital tracts, the corpus callosum, and the anterior thalamic radiation. We did not find any significant differences between the eye disease participants with VH versus without VH, but did observe a negative association between hippocampal volume and VH severity in the CBS group. Discussion Our findings suggest that although there are cortical and subcortical effects associated with sight loss, structural changes do not explain the occurrence of VHs. CBS may relate instead to connectivity or excitability changes in brain networks linked to vision

    Resting-state EEG alpha/theta ratio related to neuropsychological testperformance in Parkinson’s Disease

    Get PDF
    Q2Q1Objective To determine possible associations of hemispheric-regional alpha/theta ratio (α/θ) with neuropsychological test performance in Parkinson’s Disease (PD) non-demented patients. Methods 36 PD were matched to 36 Healthy Controls (HC). The α/θ in eight hemispheric regions was computed from the relative power spectral density of the resting-state quantitative electroencephalogram (qEEG). Correlations between α/θ and performance in several neuropsychological tests were conducted, significant findings were included in a moderation analysis. Results The α/θ in all regions was lower in PD than in HC, with larger effect sizes in the posterior regions. Right parietal, and right and left occipital α/θ had significant positive correlations with performance in Judgement of Line Orientation Test (JLOT) in PD. Adjusted moderation analysis indicated that right, but not left, occipital α/θ influenced the JLOT performance related to PD. Conclusions Reduction of the occipital α/θ, in particular on the right side, was associated with visuospatial performance impairment in PD. Significance Visuospatial impairment in PD, which is highly correlated with the subsequent development of dementia, is reflected in α/θ in the right posterior regions. The right occipital α/θ may represent a useful qEEG marker for evaluating the presence of early signs of cognitive decline in PD and the subsequent risk of dementia.https://orcid.org/0000-0001-5832-0603Revista Internacional - Indexad

    Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease

    Get PDF
    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. © 2014 The Author

    Preservation and compensation: The functional neuroanatomy of insight and working memory in schizophrenia

    Get PDF
    Background: Poor insight in schizophrenia has been theorised to reflect a cognitive deficit that is secondary to brain abnormalities, localized in the brain regions that are implicated in higher order cognitive functions, including working memory (WM). This study investigated WM-related neural substrates of preserved and poor insight in schizophrenia. Method: Forty stable schizophrenia outpatients, 20 with preserved and 20 with poor insight (usable data obtained from 18 preserved and 14 poor insight patients), and 20 healthy participants underwent functional magnetic resonance imaging (fMRI) during a parametric 'n-back' task. The three groups were preselected to match on age, education and predicted IQ, and the two patient groups to have distinct insight levels. Performance and fMRI data were analysed to determine how groups of patients with preserved and poor insight differed from each other, and from healthy participants. Results: Poor insight patients showed lower performance accuracy, relative to healthy participants (p. = 0.01) and preserved insight patients (p. = 0.08); the two patient groups were comparable on symptoms and medication. Preserved insight patients, relative to poor insight patients, showed greater activity most consistently in the precuneus and cerebellum (both bilateral) during WM; they also showed greater activity than healthy participants in the inferior-superior frontal gyrus and cerebellum (bilateral). Group differences in brain activity did not co-vary significantly with performance accuracy. Conclusions: The precuneus and cerebellum function contribute to preserved insight in schizophrenia. Preserved insight as well as normal-range WM capacity in schizophrenia sub-groups may be achieved via compensatory neural activity in the frontal cortex and cerebellum. © 2013 Elsevier B.V.Wellcome Trust, UK; NIHR Birmingham and Black Country CLAHRC, UK; Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London; South London and Maudsley NHS Foundation Trust, UK
    corecore