45 research outputs found

    The IL-23/IL-17 immune pathway in arthritis

    Get PDF

    The IL-23/IL-17 immune pathway in arthritis

    Get PDF

    Interleukin-23 is critical for full-blown expression of a non-autoimmune destructive arthritis and regulates interleukin-17A and RORγt in γδ T cells

    Get PDF
    Introduction: Interleukin (IL)-23 is essential for the development of various experimental autoimmune models. However, the role of IL-23 in non-autoimmune experimental arthritis remains unclear. Here, we examined the role of IL-23 in the non-autoimmune antigen-induced arthritis (AIA) model. In addition, the regulatory potential of IL-23 in IL-17A and retinoic acid-related orphan receptor gamma t (RORγt) expression in CD4+and TCRγδ+T cells was evaluated systemically as well as at the site of inflammation.Methods: Antigen-induced arthritis was induced in wild-type, IL-23p19-deficient and IL-17 Receptor A - knockout mice. At differe

    IL-23 Dependent and Independent Stages of Experimental Arthritis: No Clinical Effect of Therapeutic IL-23p19 Inhibition in Collagen-induced Arthritis

    Get PDF
    IL-23p19 deficient mice have revealed a critical role of IL-23 in the development of experimental autoimmune diseases, such as collagen-induced arthritis (CIA). Neutralizing IL-23 after onset of CIA in rats has been shown to reduce paw volume, but the effect on synovial inflammation and the immunological autoimmune response is not clear. In this study, we examined the role of IL-23 at different stages of CIA and during T cell memory mediated flare-up arthritis with focus on changes in B cell activity and Th1/Th17 modulation. Anti-IL-23p19 antibody (anti-IL23p19) treatment, starting 15 days after the type II collagen (CII)-immunization but before clinical signs of disease onset, significantly suppressed the severity of CIA. This was accompanied with significantly lower CII-specific IgG1 levels and lower IgG2a levels in the anti-IL-23p19 treated mice compared to the control group. Importantly, neutralizing IL-23 after the first signs of CIA did not ameliorate the disease. This was in contrast to arthritic mice that underwent an arthritis flare-up since a significantly lower disease score was observed in the IL-23p19 treated mice compared to the control group, accompanied by lower synovial IL-17A and IL-22 expression in the knee joints of these mice. These data show IL-23-dependent and IL-23-independent stages during autoimmune CIA. Furthermore, the memory T cell mediated flare-up arthritis is IL-23-mediated. These data suggest that specific neutralization of IL-23p19 after onset of autoimmune arthritis may not be beneficial as a therapeutic therapy for patients with rheumatoid arthritis (RA). However, T cell mediated arthritis relapses in patients with RA might be controlled by anti-IL-23p19 treatment

    Yap1-Driven Intestinal Repair Is Controlled by Group 3 Innate Lymphoid Cells

    Get PDF
    Intestinal repair is driven by epithelial stem cells, but how these stem cells are instructed to initiate repair was unknown. Here, Romera-Hernández et al. report that epithelial proliferation after damage is independent of the stem cell-protective signal IL-22 but requires ILC3-dependent amplification of regenerative YAP1 signaling in stem cells.Tissue repair requires temporal control of progenitor cell proliferation and differentiation to replenish damaged cells. In response to acute insult, group 3 innate lymphoid cells (ILC3s) regulate intestinal stem cell maintenance and subsequent tissue repair. ILC3-derived IL-22 is important for stem cell protection, but the mechanisms of ILC3-driven tissue regeneration remain incompletely defined. Here we report that ILC3-driven epithelial proliferation and tissue regeneration are independent of IL-22. In contrast, ILC3s amplify the magnitude of Hippo-Yap1 signaling in intestinal crypt cells, ensuring adequate initiation of tissue repair and preventing excessive pathology. Mechanistically, ILC3-driven tissue repair is Stat3 indepe

    Functional differences between human NKp44- and NKp44+ RORC+ innate lymphoid cells

    Get PDF
    Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC+ innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC+ innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44+ IL-22 producing cells are present in tonsils while NKp44- IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44+ ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44+ ILC are the main ILC subset producing IL-22. NKp44- ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses

    Switch-maintenance gemcitabine after first-line chemotherapy in patients with malignant mesothelioma (NVALT19):an investigator-initiated, randomised, open-label, phase 2 trial

    Get PDF
    Background Almost all patients with malignant mesothelioma eventually have disease progression after first-line therapy. Previous studies have investigated maintenance therapy, but none has shown a great effect. We aimed to assess the efficacy and safety of switch-maintenance gemcitabine in patients with malignant mesothelioma without disease progression after first-line chemotherapy. Methods We did a randomised, open-label, phase 2 trial in 18 hospitals in the Netherlands (NVALT19). We recruited patients aged older than 18 years with unresectable malignant mesothelioma with no evidence of disease progression after at least four cycles of first-line chemotherapy (with platinum and pemetrexed), who had a WHO performance status of 0-2, adequate organ function, and measurable or evaluable disease. Exclusion criteria were active uncontrolled infection or severe cardiac dysfunction, serious disabling conditions, symptomatic CNS metastases, radiotherapy within 2 weeks before enrolment, and concomitant use of any other drugs under investigation. Patients were randomly assigned (1:1), using the minimisation method, to maintenance intravenous gemcitabine (1250 mg/m(2) on days 1 and 8, in cycles of 21 days) plus supportive care, or to best supportive care alone, until disease progression, unacceptable toxicity, serious intercurrent illness, patient request for discontinuation, or need for any other anticancer agent, except for palliative radiotherapy. A CT scan of the thorax or abdomen (or both) and pulmonary function tests were done at baseline and repeated every 6 weeks. The primary outcome was progression-free survival in the intention-to-treat population. Safety was analysed in all participants who received one or more doses of the study drug or had at least one visit for supportive care. Recruitment is now closed; treatment and follow-up are ongoing. This study is registered with the Netherlands Trial Registry, NTR4132/NL3847. Findings Between March 20, 2014, and Feb 27, 2019, 130 patients were enrolled and randomly assigned to gemcitabine plus supportive care (65 patients [50%]) or supportive care alone (65 patients [50%]). No patients were lost to follow-up; median follow-up was 36.5 months (95% CI 34.2 to not reached), and one patient in the supportive care group withdrew consent. Progression-free survival was significantly longer in the gemcitabine group (median 6.2 months [95% CI 4.6-8.7]) than in the supportive care group (3.2 months [2.8-4.1]; hazard ratio [HR] 0.48 [95% CI 0.33-0.71]; p=0.0002). The benefit was confirmed by masked independent central review (HR 0.49 [0.33-0.72]; p=0.0002). Grade 3-4 adverse events occurred in 33 ( 52%) of 64 patients in the gemcitabine group and in ten (16%) of 62 patients in the supportive care group. The most frequent adverse events were anaemia, neutropenia, fatigue or asthenia, pain, and infection in the gemcitabine group, and pain, infection, and cough or dyspnoea in the supportive care group. One patient (2%) in the gemcitabine group died, due to a treatment-related infection. Interpretation Switch-maintenance gemcitabine, after first-line chemotherapy, significantly prolonged progression-free survival compared with best supportive care alone, among patients with malignant mesothelioma. This study confirms the activity of gemcitabine in treating malignant mesothelioma

    Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    Get PDF
    Disruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence of this high mitotic activity, mucosal surfaces are frequently targeted by anticancer therapies, leading to dose-limiting side effects. The cellular mechan

    3D bioactive composite scaffolds for bone tissue engineering

    Get PDF
    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed
    corecore