74 research outputs found

    Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e65235, doi:10.1371/journal.pone.0065235.Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.Support was provided by 2007/2008 Marine Biological Laboratory summer fellowships and NIH (NS066942A) grants to GM; Howard Hughes Medical Institute-USE Grant #52006287 to Hunter College of CUNY (LM); Muscular Dystrophy Association (MDA) and NIH (R01NS44170) grants to LJH; MDA and NIH (NS23868, NS23320, NS41170) grants to STB; NIH grant MH066179 to GB; NIH grants R01AG031311 and R01NS055951 to DMW; NIH (U01NS05225, R01NS050557, 1RC1NS068391, 1RC2NS070342) grants to RHB; R01NS067206 to DAB; ALS Association grants to GM, AT, RHB, and STB; and ALS/CVS Therapy Alliance grants to RHB, GM, AT, LJH, and DAB. RHB and AT received support from the Angel Fund. RHB also received support from the DeBourgknecht Fund for ALS Research, P2ALS and Project ALS

    Virus Replication as a Phenotypic Version of Polynucleotide Evolution

    Full text link
    In this paper we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius, Schuster and Sigmund ("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46 (1985) 239-262), in their study of polynucleotide evolution. By taking into account beneficial effects we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull, Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18 (2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium" and transient. Finally, based on these quantitative results we are able to draw some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1110.336

    Retinoblastoma Loss Modulates DNA Damage Response Favoring Tumor Progression

    Get PDF
    Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS), crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR) activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb) inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRasV12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies

    Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations

    Get PDF
    Recent genome-wide association studies have identified five loci (BIN1, CLU, CR1, EXOC3L2 and PICALM) as genetic determinants of Alzheimer’s disease (AD). We attempted to confirm the association between these genes and the AD risk in three contrasting European populations (from Finland, Italy and Spain). Since CLU and CR1 had already been analyzed in these populations, we restricted our investigation to BIN1, EXO2CL3 and PICALM. In a total of 2,816 AD cases and 2,706 controls, we unambiguously replicated the association of rs744373 (for BIN1) and rs541458 (for PICALM) polymorphisms with the AD risk (OR=1.26, 95% CI [1.15-1.38], p=2.9x10-7, and OR=0.80, 95% CI [0.74-0.88], p=4.6x10-7, respectively). In a meta-analysis, rs597668 (EXOC3L2) was also associated with the AD risk, albeit to a lesser extent (OR=1.19, 95% CI [1.06-1.32], p=2.0x10-3). However, this signal did not appear to be independent of APOE. In conclusion, we confirmed that BIN1 and PICALM are genetic determinants of AD, whereas the potential involvement of EXOC3L2 requires further investigation

    Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series

    Get PDF
    Background Respiratory syncytial virus (RSV) infection is an important cause of pneumonia mortality in young children. However, clinical data for fatal RSV infection are scarce. We aimed to identify clinical and socioeconomic characteristics of children aged younger than 5 years with RSV-related mortality using individual patient data. Methods In this retrospective case series, we developed an online questionnaire to obtain individual patient data for clinical and socioeconomic characteristics of children aged younger than 5 years who died with community-acquired RSV infection between Jan 1, 1995, and Oct 31, 2015, through leading research groups for child pneumonia identified through a comprehensive literature search and existing research networks. For the literature search, we searched PubMed for articles published up to Feb 3, 2015, using the key terms “RSV”, “respiratory syncytial virus”, or “respiratory syncytial viral” combined with “mortality”, “fatality”, “death”, “died”, “deaths”, or “CFR” for articles published in English. We invited researchers and clinicians identified to participate between Nov 1, 2014, and Oct 31, 2015. We calculated descriptive statistics for all variables. Findings We studied 358 children with RSV-related in-hospital death from 23 countries across the world, with data contributed from 31 research groups. 117 (33%) children were from low-income or lower middle-income countries, 77 (22%) were from upper middle-income countries, and 164 (46%) were from high-income countries. 190 (53%) were male. Data for comorbidities were missing for some children in low-income and middle-income countries. Available data showed that comorbidities were present in at least 33 (28%) children from low-income or lower middle-income countries, 36 (47%) from upper middle-income countries, and 114 (70%) from high-income countries. Median age for RSV-related deaths was 5·0 months (IQR 2·3–11·0) in low-income or lower middle-income countries, 4·0 years (2·0–10·0) in upper middle-income countries, and 7·0 years (3·6–16·8) in high-income countries. Interpretation This study is the first large case series of children who died with community-acquired RSV infection. A substantial proportion of children with RSV-related death had comorbidities. Our results show that perinatal immunisation strategies for children aged younger than 6 months could have a substantial impact on RSV-related child mortality in low-income and middle-income countries

    Increasing Access to Surgical Services in Sub-Saharan Africa: Priorities for National and International Agencies Recommended by the Bellagio Essential Surgery Group

    Get PDF
    In this Policy Forum, the Bellagio Essential Surgery Group, which was formed to advocate for increased access to surgery in Africa, recommends four priority areas for national and international agencies to target in order to address the surgical burden of disease in sub-Saharan Africa

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    • 

    corecore