544 research outputs found
Trapping of ultra-cold atoms with the magnetic field of vortices in a thin film superconducting micro-structure
We store and control ultra-cold atoms in a new type of trap using magnetic
fields of vortices in a high temperature superconducting micro-structure. This
is the first time ultra-cold atoms have been trapped in the field of magnetic
flux quanta. We generate the attractive trapping potential for the atoms by
combining the magnetic field of a superconductor in the remanent state with
external homogeneous magnetic fields. We show the control of crucial atom trap
characteristics such as an efficient intrinsic loading mechanism, spatial
positioning of the trapped atoms and the vortex density in the superconductor.
The measured trap characteristics are in good agreement with our numerical
simulations.Comment: 4pages, comments are welcom
Trapping cold atoms near carbon nanotubes: thermal spin flips and Casimir-Polder potential
We investigate the possibility to trap ultracold atoms near the outside of a
metallic carbon nanotube (CN) which we imagine to use as a miniaturized
current-carrying wire. We calculate atomic spin flip lifetimes and compare the
strength of the Casimir-Polder potential with the magnetic trapping potential.
Our analysis indicates that the Casimir-Polder force is the dominant loss
mechanism and we compute the minimum distance to the carbon nanotube at which
an atom can be trapped.Comment: 8 pages, 3 figure
Editorial on the Research Topic: Bullying and Cyberbullying: Their Nature and Impact on Psychological Wellbeing
First measurement of the K−n →Λπ−non-resonant transition amplitude below threshold
We present the analysis of K−absorption processes on He4 leading to Λπ−final states, measured with the KLOE spectrometer at the DAΦNE e+e−collider and extract, for the first time, the modulus of the non-resonant K−n →Λπ−direct production amplitude about 33 MeV below the K‾N threshold. This analysis also allows to disentangle the K−nuclear absorption at-rest from the in-flight capture, for K−momenta of about 120 MeV. The data are interpreted with the help of a phenomenological model, and the modulus of the non-resonant K−n →Λπ−amplitude for K−absorption at-rest is found to be |AK−n→Λπ−|=(0.334±0.018stat−0.058+0.034syst)fm
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope
The ANTARES telescope is well-suited for detecting astrophysical transient
neutrino sources as it can observe a full hemisphere of the sky at all times
with a high duty cycle. The background due to atmospheric particles can be
drastically reduced, and the point-source sensitivity improved, by selecting a
narrow time window around possible neutrino production periods. Blazars, being
radio-loud active galactic nuclei with their jets pointing almost directly
towards the observer, are particularly attractive potential neutrino point
sources, since they are among the most likely sources of the very high-energy
cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions
with the surrounding medium. Moreover, blazars generally show high time
variability in their light curves at different wavelengths and on various time
scales. This paper presents a time-dependent analysis applied to a selection of
flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV
Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012.
The results are compatible with fluctuations of the background. Upper limits on
the neutrino fluence have been produced and compared to the measured gamma-ray
spectral energy distribution.Comment: 27 pages, 16 figure
The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)
The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics
Inertial bioluminescence rhythms at the Capo Passero (KM3NeT-Italia) site, Central Mediterranean Sea
In the deep sea, the sense of time is dependent on geophysical fluctuations, such as internal tides and atmospheric-related inertial currents, rather than day-night rhythms. Deep-sea neutrino telescopes instrumented with light detecting Photo-Multiplier Tubes (PMT) can be used to describe the synchronization of bioluminescent activity of abyssopelagic organisms with hydrodynamic cycles. PMT readings at 8 different depths (from 3069 to 3349 m) of the NEMO Phase 2 prototype, deployed offshore Capo Passero (Sicily) at the KM3NeT-Italia site, were used to characterize rhythmic bioluminescence patterns in June 2013, in response to water mass movements. We found a significant (p < 0.05) 20.5 h periodicity in the bioluminescence signal, corresponding to inertial fluctuations. Waveform and Fourier analyses of PMT data and tower orientation were carried out to identify phases (i.e. the timing of peaks) by subdividing time series on the length of detected inertial periodicity. A phase overlap between rhythms and cycles suggests a mechanical stimulation of bioluminescence, as organisms carried by currents collide with the telescope infrastructure, resulting in the emission of light. A bathymetric shift in PMT phases indicated that organisms travelled in discontinuous deep-sea undular vortices consisting of chains of inertially pulsating mesoscale cyclones/anticyclones, which to date remain poorly known
\u201cWhat is more important than love?\u201d. Parental attachment and romantic relationship in Italian emerging adulthood
Previous researches suggest that individuals with different attachment styles practice different styles of love, but these do not consider the role of trust, communication, and closeness to the father and mother separately. The main aim of this study was to evaluate the relationship and the impact of parental attachment, through the analysis of the participants\u2019 self-reported account and 1. Department of Education, Cultural Heritage and Tourism, University of Macerata. Postbox: Piazzale Luigi Bertelli (Contrada Vallebona) 62100, Macerata, Italy 2. Psychology of Communication department, University of Macerata, Angelo Carrieri. 3. University of Pablo de Olavide, (ES), Health Plus Parish Priest Mifsud Str. Hamrun, Malta 4. Health Plus Parish Priest Mifsud Str. Hamrun, Malta Accepted Manuscript 4 romantic styles in Italians emerging adulthood by using a multidimensional approach (trust, communication, closeness to father and mother). The 296 participants (19\u201329 years; 50.7% males) rated items of information on a questionnaire, regarding their perspective of their attachment to their mother/father and attitude toward love. Using a variable-centred approach and a person-centred approach, the results suggest that the respondents differed in levels of parental attachment or love styles and that the present parental attachment has a positive impact on their romantic relationship. It is possible to estimate romantic relationships and prevent manic relationships based on the individual\u2019s current perceptions of their attachment to the father or mother. The role of parents and paternal attachment, are still fundamental in Italian young adults. The role of communication with the mother, in particular, is controversial and should be further investigated
- …
