33 research outputs found

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    The Small Acceptance Vertex Detector of NA61/SHINE

    No full text
    Charmonium production in heavy ion collisions is considered as an important diagnostic probe for studying the phase diagram of strongly interacting matter for potential phase transitions. The interpretation of existing data from the CERN SPS is hampered by a lack of knowledge on the properties of open charm particle production in the fireball. Moreover, open charm production in heavy ion collisions by itself is poorly understood. To overcome this obstacle, the NA61/SHINE was equipped with a Small Acceptance Vertex Detector (SAVD), which is predicted to make the experiment sensitive to open charm mesons produced in A-A collisions at the SPS top energy. This paper will introduce the concept and the hardware of the SAVD. Moreover, first running experience as obtained in a commissioning run with a 150 AGeV/c Pb+Pb collision system will be reported

    Measuring KS0K± interactions using Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    We present the first ever measurements of femtoscopic correlations between the K0 S and K± particles. The analysis was performed on the data from Pb–Pb collisions at √sNN = 2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for K0 SK− are found to be equal within the experimental uncertainties to those for K0 SK+. Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquar

    Multiplicity dependence of inclusive J/ψ production at midrapidity in pp collisions at √s=13 TeV

    No full text
    Measurements of the inclusive J/ψ yield as a function of charged-particle pseudorapidity density dNch/dη in pp collisions at √s = 13 TeV with ALICE at the LHC are reported. The J/ψ meson yield is measured at midrapidity (|y| < 0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (|η| < 1) and at forward rapidity (−3.7 < η < −1.7 and 2.8 < η < 5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/ψ yield with normalized dNch/dη is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively

    Multiplicity dependence of K*(892)0 and ϕ(1020) production in pp collisions at t √s=13 TeV

    No full text
    The striking similarities that have been observed between high-multiplicity proton-proton (pp) collisions and heavy-ion collisions can be explored through multiplicity-differential measurements of identified hadrons in pp collisions. With these measurements, it is possible to study mechanisms such as collective flow that determine the shapes of hadron transverse momentum (pT) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in an extended hadron-gas phase, and to investigate different explanations provided by phenomenological models for enhancement of strangeness production with increasing multiplicity. In this paper, these topics are addressed through measurements of the K∗(892)0 and φ(1020) mesons at midrapidity in pp collisions at √s = 13 TeV as a function of the charged-particle multiplicity. The results include the pT spectra, pT-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed

    Measurement of charged jet suppression in Pb-Pb collisions at √sNN = 2.76 TeV

    No full text
    A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at sNN−−−√=2.76 TeV is reported. Jets are reconstructed from charged particles using the anti-kT jet algorithm with jet resolution parameters R of 0.2 and 0.3 in pseudo-rapidity |η|<0.5. The transverse momentum pT of charged particles is measured down to 0.15 GeV/c which gives access to the low pT fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter R=0.3 considered in the analysis. The fragmentation bias introduced by selecting jets with a high pT leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with R=0.2 and R=0.3 is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with R<0.3.

    Transverse momentum spectra of charged particles in proton–proton collisions at √s=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at √s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

    No full text
    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose–Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p–Pb and Pb–Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p–Pb collisions are found to be 5–15% larger than those in pp, while those in Pb–Pb are 35–55% larger than those in p–Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p–Pb as compared to pp collisions at similar multiplicity

    Production of charged pions, kaons and protons at large transverse momenta in pp and Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    Transverse momentum spectra of π±, K± and p(pÂŻ) up to pT = 20 GeV/c at mid-rapidity in pp, peripheral (60–80%) and central (0–5%) Pb–Pb collisions at √sNN = 2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at pT ≈ 3 GeV/c in central Pb–Pb collisions. Below the peak, pT 10 GeV/c particle ratios in pp and Pb–Pb collisions are in agreement and the nuclear modification factors for π±, K± and p(pÂŻ) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets
    corecore