6 research outputs found

    A Deuterated Neutron Detector Array for the Study of Nuclear Reactions with Stable and Rare Isotope Beams.

    Full text link
    Deuterated liquid scintillation detectors have shown promising results as neutron spectrometers for nuclear science and other applications. Unlike normal hydrogen-based scintillators, they can provide neutron spectroscopic information without time-of-flight (ToF), allowing for close proximity to the neutron source for good angular coverage and absolute detector efficiency. Likewise DC-beams can then be used with higher intensity than a typical pulsed beam, resulting in a significant advantage. Neutron spectra can be extracted directly from the measured light-response spectra with higher energy resolution than short-path neutron ToF. In this thesis, the development, extensive evaluation, and full characterization of an array of such detectors (The University of Michigan Deuterated Scintillator Array: UM-DSA) is discussed. Digital Pulse-Shape Discrimination (DPSD) using fast waveform digitizers (1-2 GS/s) is employed to permit not only separation of neutron and gamma events but also various recoils from nuclear reactions within the scintillator with subsequent improvements in the neutron spectra extracted. A series of (d,n), (3He,n), and (α,n) experiments performed at the University of Notre Dame Nuclear Structure Laboratory illustrate the advantage of these detectors for nuclear reaction measurements, including those using exotic beams. Differential cross section measurements and extracted spectroscopic factors over a range of nuclei using the spectrum unfolding technique show good agreement with published results using neutron ToF which demonstrates the capability of these detectors for nuclear physics measurements.PhDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110452/1/febbraro_1.pd

    Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective

    Get PDF
    Abstract Background Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. Discussion This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Summary Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children

    Dysregulation of neuronal iron homeostasis as an alternative unifying effect of mutations causing familial Alzheimer's disease

    Get PDF
    The overwhelming majority of dominant mutations causing early onset familial Alzheimer's disease (EOfAD) occur in only three genes, PSEN1, PSEN2, and APP. An effect-in-common of these mutations is alteration of production of the APP-derived peptide, amyloid ß (Aß). It is this key fact that underlies the authority of the Amyloid Hypothesis that has informed Alzheimer's disease research for over two decades. Any challenge to this authority must offer an alternative explanation for the relationship between the PSEN genes and APP. In this paper, we explore one possible alternative relationship - the dysregulation of cellular iron homeostasis as a common effect of EOfAD mutations in these genes. This idea is attractive since it provides clear connections between EOfAD mutations and major characteristics of Alzheimer's disease such as dysfunctional mitochondria, vascular risk factors/hypoxia, energy metabolism, and inflammation. We combine our ideas with observations by others to describe a "Stress Threshold Change of State" model of Alzheimer's disease that may begin to explain the existence of both EOfAD and late onset sporadic (LOsAD) forms of the disease. Directing research to investigate the role of dysregulation of iron homeostasis in EOfAD may be a profitable way forward in our struggle to understand this form of dementia

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    First constraint on coherent elastic neutrino-nucleus scattering in argon

    No full text
    Coherent elastic neutrino-nucleus scattering (CEvNS) is calculated to be the dominant neutrino scattering channel for neutrinos of energy EνE_ν < 100 MeV . We report a limit for this process from data collected in an engineering run of the 29 kg CENNS-10 liquid argon detector located 27.5 m from the pion decay-at-rest neutrino source at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) with 4.2 × 1022^{22} protons on target. The dataset provided constraints on beam-related backgrounds critical for future measurements and yielded < 7.4 candidate CEvNS events which implies a cross section for the process, averaged over the SNS pion decay-at-rest flux, of < 3.4 × 1039^{−39} cm2^2 , a limit within twice the Standard Model prediction. This is the first limit on CEvNS from an argon nucleus and confirms the earlier CsI[Na] nonstandard neutrino interaction constraints from the collaboration. This run demonstrated the feasibility of the ongoing experimental effort to detect CEvNS with liquid argon
    corecore