75 research outputs found

    Adult Human Brain Neural Progenitor Cells (NPCs) and Fibroblast-Like Cells Have Similar Properties In Vitro but Only NPCs Differentiate into Neurons

    Get PDF
    The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5–6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments

    Malaria Parasite Schizont Egress Antigen-1 Plays an Essential Role in Nuclear Segregation during Schizogony.

    Get PDF
    Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites.IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress

    Regional and cellular gene expression changes in human Huntington's disease brain

    Get PDF
    Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative disease

    Stroke awareness and knowledge in an Urban New Zealand population

    Get PDF
    © 2015 National Stroke Association. Background Stroke is the third most common cause of death and a major cause of chronic disability in New Zealand. Linked to risk factors that develop across the life-course, stroke is considered to be largely preventable. This study assessed the awareness of stroke risk, symptoMS detection, and prevention behaviors in an urban New Zealand population. Methods Demographics, stroke risk factors awareness, symptoMS responsiveness, and prevention behaviors were evaluated using a structured oral questionnaire. Binomial logistic regression analyses were used to identify predictors of stroke literacy. Results Although personal experience of stroke increased awareness of symptoms and their likeliness to indicate the need for urgent medical attention, only 42.7% of the respondents (n = 850) identified stroke as involving both blood and the brain. Educational attainment at or above a trade certificate, apprenticeship, or diploma increased the awareness of stroke symptoms compared with those with no formal educational attainment. Pacific Island respondents were less likely than New Zealand Europeans to identify a number of stroke risk factors. Ma¯ori, Pacific Island, and Asian respondents were less likely to identify symptoms of stroke and indicate the need for urgent medical attention. Conclusions The variability in stroke awareness and knowledge may suggest the need to enhance stroke-related health literacy that facilitates understanding of risk and of factors that reduce morbidity and mortality after stroke in people of Ma¯ori and Pacific Island descent and in those with lower educational attainment or socioeconomic status. It is therefore important that stroke awareness campaigns include tailored components for target audiences

    Characterisation of PDGF-BB:PDGFRβ signalling pathways in human brain pericytes: evidence of disruption in Alzheimer's disease.

    Full text link
    peer reviewedPlatelet-derived growth factor-BB (PDGF-BB):PDGF receptor-β (PDGFRβ) signalling in brain pericytes is critical to the development, maintenance and function of a healthy blood-brain barrier (BBB). Furthermore, BBB impairment and pericyte loss in Alzheimer's disease (AD) is well documented. We found that PDGF-BB:PDGFRβ signalling components were altered in human AD brains, with a marked reduction in vascular PDGFB. We hypothesised that reduced PDGF-BB:PDGFRβ signalling in pericytes may impact on the BBB. We therefore tested the effects of PDGF-BB on primary human brain pericytes in vitro to define pathways related to BBB function. Using pharmacological inhibitors, we dissected distinct aspects of the PDGF-BB response that are controlled by extracellular signal-regulated kinase (ERK) and Akt pathways. PDGF-BB promotes the proliferation of pericytes and protection from apoptosis through ERK signalling. In contrast, PDGF-BB:PDGFRβ signalling through Akt augments pericyte-derived inflammatory secretions. It may therefore be possible to supplement PDGF-BB signalling to stabilise the cerebrovasculature in AD

    The proteasome controls ESCRT-III–mediated cell division in an archaeon

    Get PDF
    INTRODUCTION: Eukaryotes likely arose from a symbiotic partnership between an archaeal host and an alpha-proteobacterium, giving rise to the cell body and the mitochondria, respectively. Because of this, a number of proteins controlling key events in the eukaryotic cell division cycle have their origins in archaea. These include ESCRT-III proteins, which catalyze the final step of cytokinesis in many eukaryotes and in the archaeon Sulfolobus acidocaldarius. However, to date, no archaeon has been found that harbors homologs of cell cycle regulators, like cyclin-dependent kinases and cyclins, which order events in the cell cycle across all eukaryotes. Thus, it remains uncertain how key events in the archaeal cell cycle, including division, are regulated. RATIONALE: An exception to this is the 20S proteasome, which is conserved between archaea and eukaryotes and which regulates the eukaryotic cell cycle through the degradation of cyclins. To explore the function of the 20S proteasome in the archaeon S. acidocaldarius, we determined its structure by crystallography and carried out in vitro biochemical analyses of its activity with and without inhibition. The impact of proteasome inhibition on cell division and cell cycle progression was examined in vivo by flow cytometry and super-resolution microscopy. Following up with mass spectrometry, we identified proteins degraded by the proteasome during division. Finally, we used molecular dynamics simulations to model the mechanics of this process. RESULTS: Here, we present a structure of the 20S proteasome of S. acidocaldarius to a resolution of 3.7 Å, which we used to model its sensitivity to the eukaryotic inhibitor bortezomib. When this inhibitor was added to synchronous cultures, it was found to arrest cells mid-division, with a stable ESCRT-III division ring positioned at the cell center between the two separated and prereplicative nucleoids. Proteomics was then used to identify a single archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome that must be degraded to enable division to proceed. Examining the localization patterns of CdvB and two other archaeal ESCRT-III homologs, CdvB1 and CdvB2, by flow cytometry and super-resolution microscopy revealed the sequence of events that leads to division. First, a CdvB ring is assembled. This CdvB ring then templates the assembly of the contractile ESCRT-III homologs, CdvB1 and CdvB2, to form a composite division ring. Cell division is then triggered by proteasome-mediated degradation of CdvB, which allows the CdvB1:CdvB2 copolymer to constrict, pulling the membrane with it. During constriction, the CdvB1:CdvB2 copolymer is disassembled, thus vacating the membrane neck to drive abscission, yielding two daughter cells with diffuse CdvB1 and CdvB2. CONCLUSION: This study reveals a role for the proteasome in driving structural changes in a composite ESCRT-III copolymer, enabling the stepwise assembly, disassembly, and contraction of an ESCRT-III–based division ring. Although it is not yet clear how proteasomal inhibition prevents S. acidocaldarius cells from resetting the cell cycle to initiate the next S phase, these data strengthen the case for the eukaryotic cell cycle regulation having its origins in archaea

    Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial.

    Get PDF
    Background: The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. Methods: FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open-label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient-years was performed to assess the safety of FCM versus oral iron over an extended period. Results: The safety population included 616 patients. The incidence of one or more adverse events was 91.0, 100.0 and 105.0 per 100 patient-years in the high ferritin FCM, low ferritin FCM and oral iron groups, respectively. The incidence of adverse events with a suspected relation to study drug was 15.9, 17.8 and 36.7 per 100 patient-years in the three groups; for serious adverse events, the incidence was 28.2, 27.9 and 24.3 per 100 patient-years. The incidence of cardiac disorders and infections was similar between groups. At least one ferritin level ≥800 µg/L occurred in 26.6% of high ferritin FCM patients, with no associated increase in adverse events. No patient with ferritin ≥800 µg/L discontinued the study drug due to adverse events. Estimated glomerular filtration rate remained the stable in all groups. Conclusions: These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD

    Quantifying uncertainty in future Southern Hemisphere circulation trends

    No full text
    The Antarctic polar night jet has intensified during spring in recent decades due to stratospheric ozone depletion and rising greenhouse gas (GHG) concentrations and this has had substantial effects on the region's climate. GHG concentrations will rise over the 21st century whereas stratospheric ozone is expected to recover and there is uncertainty in future southern hemisphere (SH) circulation trends. We examine sensitivity to the physics parameterisation of the 21st century SH circulation projection of a coupled atmosphere-ocean General Circulation Model and the sensitivity of the contribution from stratospheric ozone recovery. Different model parameterizations give a greater range of future trends in the position of the tropospheric jet than has been found in previous multi-model comparisons. Ozone recovery causes a weakening and northward shift of the DJF tropospheric jet. Varying the physics parameterization affects the zonal wind response to ozone recovery of the SON stratosphere by ∼10% and that of the DJF troposphere by ∼25%. The projected future SAM index changes with and without ozone recovery and the SAM index response to ozone recovery alone are found to be strongly positively correlated with projected 21st century global warming. © 2012. American Geophysical Union. All Rights Reserved
    • …
    corecore