48 research outputs found
First simultaneous optical/near-infrared imaging of an X-ray selected, high-redshift cluster of galaxies with GROND: the galaxy population of XMMU J0338.7+0030 at z=1.1
The XMM-Newton Distant Cluster Project is a serendipitous survey for clusters
of galaxies at redshifts z>=0.8 based on deep archival XMM-Newton observations.
... Low-significance candidate high-z clusters are followed up with the
seven-channel imager GROND (Gamma-Ray Burst Optical and Near-Infrared Detector)
that is mounted at a 2m-class telescope. ... The test case is XMMU
J0338.7+0030, suggested to be at z~1.45+/-0.15 from the analysis of the z-H vs
H colour-magnitude diagram obtained from the follow-up imaging. Later VLT-FORS2
spectroscopy enabled us to identify four members, which set this cluster at
z=1.097+/-0.002. To reach a better knowledge of its galaxy population, we
observed XMMU J0338.7+0030 with GROND for about 6 hr. The publicly available
photo-z code le Phare was used. The Ks-band number counts of the non-stellar
sources out of the 832 detected down to z'~26 AB-mag in the 3.9x4.3 square
arcmin region of XMMU J0338.7+0030 imaged at all GROND bands clearly exceed
those computed in deep fields/survey areas at ~20.5 - 22.5 AB-mag. The
photo-z's of the three imaged spectroscopic members yield z=1.12+/-0.09. The
spatial distribution and the properties of the GROND sources with a photo-z in
the range 1.01 - 1.23 confirm the correspondence of the X-ray source with a
galaxy over-density at a significance of at least 4.3 sigma. Candidate members
that are spectro-photometrically classified as elliptical galaxies define a red
locus in the i'-z' vs z' colour-magnitude diagram that is consistent with the
red sequence of the cluster RDCS J0910+5422 at z=1.106. XMMU J0338.7+0030 hosts
also a population of bluer late-type spirals and irregulars. The starbursts
among the photometric members populate both loci, consistently with previous
results. The analysis of the available data set indicates that XMMU
J0338.7+0030 is a low-mass cluster (M_200 ~ 1E14 M_sun) at z=1.1. (Abridged)Comment: accepted for publication in Astronomy & Astrophysics Main Journal, 27
pages, 24 figures, 1 tabl
Bone morphogenetic proteins − 7 and − 2 in the treatment of delayed osseous union secondary to bacterial osteitis in a rat model
Background: Bone infections due to trauma and subsequent delayed or impaired fracture healing represent a great challenge in orthopedics and trauma surgery. The prevalence of such bacterial infection-related types of delayed non-union is high in complex fractures, particularly in open fractures with additional extensive soft-tissue damage. The aim of this study was to establish a rat model of delayed osseous union secondary to bacterial osteitis and investigate the impact of rhBMP-7 and rhBMP-2 on fracture healing in the situation of an ongoing infection.
Methods: After randomization to four groups 72 Sprague-Dawley rats underwent a transverse fracture of the midshaft tibia stabilized by intramedullary titanium K-wires. Three groups received an intramedullary inoculation with Staphylococcus aureus (103 colony-forming units) before stabilization and the group without bacteria inoculation served as healing control. After 5 weeks, a second surgery was performed with irrigation of the medullary canal and local rhBMP-7 and rhBMP-2 treatment whereas control group and infected control group received sterile saline. After further 5 weeks rats were sacrificed and underwent biomechanical testing to assess the mechanical stability of the fractured bone. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, and to quantify callus formation and the mineralized area of the callus.
Results: Biomechanical testing showed a significantly higher fracture torque in the non-infected control group and the infected rhBMP-7- and rhBMP-2 group compared with the infected control group (p < 0.001). RhBMP-7 and rhBMP-2 groups did not show statistically significant differences (p = 0.57). Histological findings supported improved bone-healing after rhBMP treatment but quantitative micro-CT and histomorphometric results still showed significantly more hypertrophic callus tissue in all three infected groups compared to the non-infected group. Results from a semiquantitative bone-healing-score revealed best bone-healing in the non-infected control group. The expected chronic infection was confirmed in all infected groups.
Conclusions: In delayed bone healing secondary to infection rhBMP treatment promotes bone healing with no significant differences in the healing efficacy of rhBMP-2 and rhBMP-7 being noted. Further new therapeutic bone substitutes should be analyzed with the present rat model for delayed osseous union secondary to bacterial osteitis
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study
BACKGROUND: This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). METHODS: In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. RESULTS: Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. CONCLUSIONS: Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife