52 research outputs found

    Constructing Modular and Universal Single Molecule Tension Sensor Using Protein G to Study Mechano-sensitive Receptors

    Get PDF
    Recently a variety of molecular force sensors have been developed to study cellular forces acting through single mechano-sensitive receptors. A common strategy adopted is to attach ligand molecules on a surface through engineered molecular tethers which report cell-exerted tension on receptor-ligand bonds. This approach generally requires chemical conjugation of the ligand to the force reporting tether which can be time-consuming and labor-intensive. Moreover, ligand-tether conjugation can severely reduce the activity of protein ligands. To address this problem, we developed a Protein G (ProG)-based force sensor in which force-reporting tethers are conjugated to ProG instead of ligands. A recombinant ligand fused with IgG-Fc is conveniently assembled with the force sensor through ProG:Fc binding, therefore avoiding ligand conjugation and purification processes. Using this approach, we determined that molecular tension on E-cadherin is lower than dsDNA unzipping force (nominal value: 12 pN) during initial cadherin-mediated cell adhesion, followed by an escalation to forces higher than 43 pN (nominal value). This approach is highly modular and potentially universal as we demonstrate using two additional receptor-ligand interactions, P-selectin & PSGL-1 and Notch & DLL1

    Cdc42-dependent modulation of rigidity sensing and cell spreading in tumor repopulating cells

    Get PDF
    Recently, a robust mechanical method has been established to isolate a small subpopulation of highly tumorigenic tumor repopulating cells (TRCs) from parental melanoma cells. In order to characterize the molecular and mechanical properties of TRCs, we utilized the tension gauge tether (TGT) single-molecule platform and investigated force requirements during early cell spreading events. TRCs required the peak single molecular tension of around 40 pN through integrins for initial adhesion like the parental control cells, but unlike the control cells, they did not spread and formed very few mature focal adhesions (FAs). Single molecule resolution RNA quantification of three Rho GTPases showed that downregulation of Cdc42, but not Rac1, is responsible for the unusual biophysical features of TRCs and that a threshold level of Cdc42 transcripts per unit cell area is required to initiate cell spreading. Cdc42 overexpression rescued TRC spreading through FA formation and restored the sensitivity to tension cues such that TRCs, like parental control cells, increase cell spreading with increasing single-molecular tension cues. Our single molecule studies identified an unusual biophysical feature of suppressed spreading of TRCs that may enable us to distinguish TRC population from a pool of heterogeneous tumor cell population

    Defining single molecular forces required for Notch activation using nano yoyo

    Get PDF
    Notch signaling, involved in development and tissue homeostasis, is activated at the cell-cell interface through ligand-receptor interactions. Previous studies have implicated mechanical forces in the activation of Notch receptor upon binding to its ligand. Here we aimed to determine the single molecular force required for Notch activation by developing a novel low tension gauge tether (LTGT). LTGT utilizes the low unbinding force between single-stranded DNA (ssDNA) and E. coli ssDNA binding protein (SSB) (~4 pN dissociation force at 500 nm/s pulling rate). The ssDNA wraps around SSB and, upon application of force, unspools from SSB, much like the unspooling of a yoyo. One end of this nano yoyo is attached to the surface though SSB while the other end presents a ligand. A Notch receptor, upon binding to its ligand, is believed to undergo force-induced conformational changes required for activating downstream signaling. If the required force for such activation is larger than 4 pN, ssDNA will unspool from SSB and downstream signaling will not be activated. Using these LTGTs, in combination with the previously reported TGTs that rupture double stranded DNA at defined forces, we demonstrate that Notch activation requires forces between 4-12 pN, assuming an in vivo loading rate of 60 pN/s. Taken together, our study provides a direct link between single-molecular forces and Notch activation

    Inflammatory prognostic scoring systems are risk factors for surgical site infection following wide local excision of soft tissue sarcoma

    Get PDF
    Introduction: Limb-sparing surgery with negative margins is possible in most soft tissue sarcoma (STS) resections and focuses on maximising function and minimising morbidity. Various risk factors for surgical site infections (SSIs) have been reported in the literature specific to sarcoma surgery. The aim of this study is to determine whether systemic inflammatory response prognostic scoring systems can predict post-operative SSI in patients undergoing potentially curative resection of STS. Methods: Patients who had a planned curative resection of a primary STS at a single centre between January 2010 and December 2019 with a minimum follow-up of 6 months were included. Data were extracted on patient and tumour characteristics, and pre-operative blood results were used to calculate inflammatory prognostic scores based on published thresholds and correlated with risk of developing SSI or debridement procedures. Results: A total of 187 cases were included. There were 60 SSIs. On univariate analysis, there was a statistically significant increased risk of SSI in patients who are diabetic, increasing specimen diameter, American Society of Anaesthesiology (ASA) grade 3, use of endoprosthetic replacement, blood loss greater than 1 L, and junctional tumour location. Modified Glasgow prognostic score, C-reactive protein/albumin ratio and neutrophil–platelet score (NPS) were statistically associated with the risk of SSI. On multivariate analysis, ASA grade 3, junctional tumour location and NPS were independently associated with the risk of developing a SSI. Conclusion: This study supports the routine use of simple inflammation-based prognostic scores in identifying patients at increased risk of developing infectious complications in patients undergoing potentially curative resection of STS

    World Heart Federation Roadmap on Atrial Fibrillation - A 2020 Update

    Get PDF
    The World Heart Federation (WHF) commenced a Roadmap initiative in 2015 to reduce the global burden of cardiovascular disease and resultant burgeoning of healthcare costs. Roadmaps provide a blueprint for implementation of priority solutions for the principal cardiovascular diseases leading to death and disability. Atrial fibrillation (AF) is one of these conditions and is an increasing problem due to ageing of the world’s population and an increase in cardiovascular risk factors that predispose to AF. The goal of the AF roadmap was to provide guidance on priority interventions that are feasible in multiple countries, and to identify roadblocks and potential strategies to overcome them. Since publication of the AF Roadmap in 2017, there have been many technological advances including devices and artificial intelligence for identification and prediction of unknown AF, better methods to achieve rhythm control, and widespread uptake of smartphones and apps that could facilitate new approaches to healthcare delivery and increasing community AF awareness. In addition, the World Health Organisation added the non-vitamin K antagonist oral anticoagulants (NOACs) to the Essential Medicines List, making it possible to increase advocacy for their widespread adoption as therapy to prevent stroke. These advances motivated the WHF to commission a 2020 AF Roadmap update. Three years after the original Roadmap publication, the identified barriers and solutions were judged still relevant, and progress has been slow. This 2020 Roadmap update reviews the significant changes since 2017 and identifies priority areas for achieving the goals of reducing death and disability related to AF, particularly targeted at low-middle income countries. These include advocacy to increase appreciation of the scope of the problem; plugging gaps in guideline management and prevention through physician education, increasing patient health literacy, and novel ways to increase access to integrated healthcare including mHealth and digital transformations; and greater emphasis on achieving practical solutions to national and regional entrenched barriers. Despite the advances reviewed in this update, the task will not be easy, but the health rewards of implementing solutions that are both innovative and practical will be great

    Effects of Combined Therapy with Ezetimibe Plus Simvastatin After Drug-Eluting Stent Implantation in a Porcine Coronary Restenosis Model

    Get PDF
    The aim of this study was to examine the anti-proliferative and anti-inflammatory effects of ezetimibe/simvastatin (E/S) after drug-eluting stent (DES) implantation in a porcine coronary restenosis model. Pigs were randomized into two groups in which the coronary arteries (23 pigs) had DES. Stents were deployed with oversizing (stent/artery ratio 1.3:1) in porcine coronary arteries. Fifteen pigs were taken 10/20 mg of E/S and eight pigs were not taken E/S. Histopathologic analysis was assessed at 28 days after stenting. In neointima, most inflammatory cells were lymphohistiocytes. Lymphohistiocyte count was not different between two groups (337±227 vs. 443±366 cells, P=0.292), but neointima area was significantly smaller (1.00±0.49 mm2 vs. 1.69±0.98 mm2, P=0.021) and percent area stenosis was significantly lower (23.3±10% vs. 39±19%, P=0.007) in E/S group compared with control group. There were no significant differences in fibrin score (1.99±0.79 vs. 1.81±0.88, P=0.49), endothelial score (1.75±0.66 vs. 1.80±0.59, P=0.79), and the percent of endothelium covered lumen (43±21% vs. 45±21%, P=0.84) between E/S group and control group. Combined therapy with ezetimibe and simvastatin inhibits neointimal hyperplasia, but does not inhibit inflammatory infiltration and arterial healing after DES implantation in a porcine coronary restenosis model

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Segmentation of Left and Right Ventricles in Cardiac MRI Using Active Contours

    No full text
    Segmentation of left and right ventricles plays a crucial role in quantitatively analyzing the global and regional information in the cardiac magnetic resonance imaging (MRI). In MRI, the intensity inhomogeneity and weak or blurred object boundaries are the problems, which makes it difficult for the intensity-based segmentation methods to properly delineate the regions of interests (ROI). In this paper, a hybrid signed pressure force function (SPF) is proposed, which yields both local and global image fitted differences in an additive fashion. A characteristic term is also introduced in the SPF function to restrict the contour within the ROI. The overlapping dice index and Hausdorff-Distance metrics have been used over cardiac datasets for quantitative validation. Using 2009 LV MICCAI validation dataset, the proposed method yields DSC values of 0.95 and 0.97 for endocardial and epicardial contours, respectively. Using 2012 RV MICCAI dataset, for the endocardial region, the proposed method yields DSC values of 0.97 and 0.90 and HD values of 8.51 and 7.67 for ED and ES, respectively. For the epicardial region, it yields DSC values of 0.92 and 0.91 and HD values of 6.47 and 9.34 for ED and ES, respectively. Results show its robustness in the segmentation application of the cardiac MRI
    corecore