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Abstract 

Recently, a robust mechanical method has been established to isolate a small subpopulation of 

highly tumorigenic tumor repopulating cells (TRCs) from parental melanoma cells. In order to 

characterize the molecular and mechanical properties of TRCs, we utilized the tension gauge 

tether (TGT) single-molecule platform and investigated force requirements during early cell 

spreading events. TRCs required the peak single molecular tension of around 40 pN through 

integrins for initial adhesion like the parental control cells, but unlike the control cells, they did 

not spread and formed very few mature focal adhesions (FAs). Single molecule resolution RNA 

quantification of three Rho GTPases showed that downregulation of Cdc42, but not Rac1, is 

responsible for the unusual biophysical features of TRCs and that a threshold level of Cdc42 

transcripts per unit cell area is required to initiate cell spreading. Cdc42 overexpression rescued 

TRC spreading through FA formation and restored the sensitivity to tension cues such that 

TRCs, like parental control cells, increase cell spreading with increasing single-molecular 

tension cues. Our single molecule studies identified an unusual biophysical feature of suppressed 

spreading of TRCs that may enable us to distinguish TRC population from a pool of 

heterogeneous tumor cell population. 

 

 

Keywords: Cell adhesion and spreading, tension gauge tethers, tumor repopulating cells, focal 

adhesions, smFISH. 
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1. INTRODUCTION 

Cancer cells within a tumor ecosystem possess a remarkable capacity for self-renewal. 

Cancer stem cells, a small subpopulation of stem-cell-like-cells driving growth and progression 

of tumors, were first described in leukemia [1]. Following this work, several reports indicate the 

existence of cancer stem cells in solid tumors such as the breast [2], brain [3], skin [4], prostate 

[5], and the lungs [6]. However, evidence for the existence of cancer stem cells in solid tumors 

has been rather controversial primarily due to unreliably expressed antigen based selection 

techniques [7,8]. This prompted the need for the development of a robust technique to isolate a 

highly tumorigenic subpopulation of cancer cells. Recently, we successfully isolated a small 

fraction of highly tumorigenic cells, which we termed tumor repopulating cells (TRCs), from the 

B16-F1 melanoma cell line by culturing them in soft-3D-fibrin gels [9]. However, very little is 

known about the biophysical characteristics of such tumorigenic cells. In this study, we utilize a 

number of single-molecule techniques including single molecule fluorescence in situ 

hybridization (smFISH) [10] and our recently developed tension gauge tether (TGT) technique 

[11] to reveal the molecular and mechanical features of TRCs. 

 

2. MATERIALS and METHODS 

2.1 Cell culture 

Melanoma cell lines B16-F1 and B16-F10 cells were maintained in rigid culture dishes 

with high-glucose DMEM (Invitrogen) cell culture medium containing 10% FBS (Hyclone) at 

37 °C with 5% CO2. The medium was supplemented with 2 mM L-glutamine, 1 mM sodium 

pyruvate, and 50 μg/ml penicillin-streptomycin. Soft 3D fibrin gels (90 Pa) were prepared as 
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described previously [9]. TRCs from these cell lines were grown in soft 3D fibrin gels using the 

same growth medium. 

2.2 Surface functionalization  

Tension gauge tethers of different tension tolerance were immobilized on passivated 

glass bottom dishes at a cyclic-RGDfK ligand density of ~ 600 ligands/μm2 (one ligand in every 

40 nm) as described elsewhere [11,12]. An earlier study showed that cell spreading and FA 

formations are not supported when the spacing between integrin binding sites is more than 58 nm 

[13]. Briefly, glass surfaces were incubated with biotinylated BSA (Sigma) for 20 min at room 

temperature, then washed with PBS and further incubated with NeutrAvidin (Thermo Fisher) for 

10 min at room temperature. These surfaces were washed again with PBS and incubated with 

TGTs of different tension tolerance or biotinylated RGDfK peptides (Peptides International). 

Following surface functionalization, cells were seeded on the surface. 

2.3 Cell area, volume, fluorescence intensity measurements 

 ImageJ (NIH) was used to measure projected cell spreading area, perimeter, and volume. 

3D volume was estimated from the Z-stack images. Cell shape index (CSI), a geometric measure 

of circularity, is a non-dimensional parameter calculated based on the projected cell area and 

perimeter using the following relation, CSI =
4∗π∗Area

Perimeter2
. CSI values range from 0 to 1, 1 being a 

perfect circle while values less than 1 indicate complex spread pattern. 

Statistical testing. All statistical analysis was carried out using a two-tailed Student’s t-test 

unless noted otherwise. 
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3. RESULTS  

3.1 TRCs do not spread on any TGT engineered surfaces 

TGTs are rupturable DNA tethers with tunable tension tolerances, Ttol [11]. Here, one 

strand of the DNA is immobilized to a glass surface via biotin-neutravidin interactions and other 

strand is conjugated to cyclic-RGDfK peptide, specific to αvβ3 integrins [14]. Ttol is highest (56 

pN) when the biotin is positioned on the opposite end of the rupturable duplex DNA tether (force 

is applied in a shearing mode) (Fig. 1a). Ttol progressively decreases to lowest value (12 pN) as 

the biotin is moved toward the same end of the duplex DNA tether (force is applied in an 

unzipping mode) (Fig. 1a). Ttol values can thus be tuned monotonically as a function of the 

distance between the biotin and the integrin ligand (Fig. 1a) [11,12,15]. Glass surfaces were 

passivated with biotinylated bovine serum albumin (BSA) prior to coating with neutravidin 

[12,16,17]. TGTs of varying Ttol or cyclic-RGDfK peptide (ruptures at significantly higher 

tension forces, >100 pN [12,18]) were then immobilized to the passivated surface through 

neutravidin-biotin linker (Fig. 1a).  

Freshly isolated TRCs from soft 3D fibrin gel were plated on surface presenting TGTs of 

nominal Ttol values of 12, 23, 33, 43, 50, 56 or >100 pN (23 and 33 pN not shown). TRCs did not 

attach to surfaces with Ttol < 40 pN suggesting that they require about 40 pN peak force through 

integrins during initial cell adhesion. Interestingly, TRCs exhibited round morphology and 

projected cell area did not increase with increasing Ttol
  on any surface supporting cell adhesion, 

indicating their inability to spread in response to increasing mechanical stimuli across single 

molecular bonds (43, 50, 56, >100 pN) (Fig. 1 b, c).  
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 Parental B16-F1 control cells also required 40 pN for initial cell adhesion, but unlike 

TRCs, they spread well on TGT surfaces, and cell spreading increased with increasing Ttol, 

suggesting that single molecular forces are sensed to promote cell spreading. (Supplementary 

Fig. 1; [12]). These data show that there is a fundamental difference in cell spreading between 

parental B16-F1 control cells and 3D fibrin selected TRCs.  

To further quantify the differences in cell morphology, we computed cell shape index 

(CSI), a dimensionless parameter for geometric circularity measurement. TRCs exhibit CSI 

values close to 1 across all TGT surfaces (Fig. 1d). In contrast, parental B16-F1 control cells 

exhibited progressively lower CSI values as Ttol
  increased, due to complex cell spreading 

patterns [12]. Suppression of cell spreading in TRCs is not specific to B16-F1 cells because a 

similar difference was also observed between more aggressive B16-F10 melanoma cell line and 

their TRCs (Supplementary Fig. 2). TRCs also failed to spread on surfaces coated with natural 

ligands fibronectin or type-I collagen, showing that suppression of cell spreading is not due to 

the use of synthetic ligands (Supplementary Fig. 3).  

3.2 Single-mRNA quantification shows altered expression of RhoA and Cdc42 in TRCs 

Because Rho-family small GTPases Rac1 and Cdc42 are known to regulate cell spreading, 

integrin clustering, and focal adhesion (FA) formation [19], we examined mRNA levels of Rac1 

and Cdc42 in TRCs using qPCR. Transcription levels of both Rac1 and Cdc42 were significantly 

lower in TRCs compared to control cells (Supplementary Fig. 4). To understand and correlate 

phenotypic changes like cell spreading and FA formation with changes in gene expression at the 

single cell level, we utilized smFISH to visualize and quantify individual transcripts in fixed 

cells [10]. We imaged Rho-family small GTPases RhoA, Rac1, and Cdc42 mRNA molecules 
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simultaneously and quantified the mRNA transcripts from single cells (Fig. 2a). We observed 

positive correlations between RhoA and Cdc42 (Fig. 2b, top panel) and between RhoA and Rac1 

(Fig. 2b, bottom panel) transcripts, with differences in absolute numbers of transcripts likely 

attributable to differences in cell volume. Since RhoA has an antagonistic relationship with Rac1 

and Cdc42 [20], we quantified RhoA to Cdc42 and RhoA to Rac1 ratios in each cell (Fig. 2c). 

Average RhoA to Rac1 ratios in the B16-F1 control cells and TRCs were similar, 2 and 3, 

respectively (Fig. 2b, bottom panel). However, the average ratio of RhoA to Cdc42 in TRCs was 

~2.7 fold higher than in control cells, potentially contributing to cell spreading suppression in 

TRCs. We also observed a large cell-cell variation of RhoA to Cdc42 ratio in TRCs but not in 

control cells (Fig. 2c).  

3.3 Many focal adhesions are formed by control melanoma cells but not TRCs  

Since Cdc42 is involved in integrin clustering and FA formation [19], we hypothesized 

that downregulation of Cdc42 expression in TRCs may translate into fewer mature FAs. To test 

this, we utilized TIRF microscopy to monitor FAs in live cells expressing mCherry-vinculin. 

Control cells and TRCs were plated for 1 and 4 h on >100 pN passivated surfaces. In contrast to 

control cells, the number of mature FAs per individual TRC remained very low even after 4 h of 

cell plating, and failed to exhibit increases in area and polarization characteristic of mature FAs 

(Fig. 3a). To quantify mature FA characteristics, we compared differences in FA area and aspect 

ratio between control cells and TRCs (Figs. 3b,c and Supplementary Fig. 5). For control cells, 

the number of FAs per cell with an area ≥1.5 µm2 increased by ~two fold between 1 hour and 4 

hour of cell plating (Fig. 3b inset). In contrast, the number of FAs per cell with an area ≥1.5 µm2 

remained low and unchanged for TRCs (Fig. 3b inset). The average FA aspect ratio for control 



8 
 

cells increased by 40% between 1and 4 h of cell plating (Supplementary Fig. 5, left inset) but 

remained almost constant for TRCs (Supplementary Fig. 5, right inset). 

3.4 Cdc42 restores cell spreading in TRCs  

We next explored if cell spreading can be restored by transient overexpression of Rac1 or 

Cdc42 in TRCs. Transient overexpression of Cdc42-GFP restored cell spreading capacity in 

TRCs (Fig. 3d, left panel). More than 80% of cells, exhibiting GFP fluorescence, readily spread 

with typical filopodia-like extensions (Supplementary Fig. 6) and cells with low Cdc42-GFP 

fluorescence did not spread (Supplementary Fig. 7). In contrast, overexpression of Rac1-GFP did 

not restore normal cell spreading (Fig. 3d, right panel; Supplementary Figs. 6) and ~20% of cells 

spread partially with small lamellipodia-like protrusions (Supplementary Fig. 8). No cell 

spreading was observed in TRCs upon overexpression of RhoA-GFP or GFP-only 

(Supplementary Fig. 9).  

We performed smFISH after transient transfection of Cdc42 in TRCs to test if there exists 

a threshold of Cdc42 to initiate TRC spreading (Fig. 3e, left). Spherical TRCs uniformly showed 

fewer than 25 transcripts per 100 m2 of projected cell area. This density indeed appears to be a 

threshold for cell spreading, as all transfected cells exceeded this density, and CSI decreased 

with increasing Cdc42 density beyond this density (Fig. 3e, right). Conversely, knocking down 

Cdc42 in parental B16-F1 control cells with 2 different siRNA constructs reversed their spread 

morphology, resulting in more than 80% Cdc42-knock down cells exhibiting round morphology 

similar to TRCs (Supplementary Fig. 10). 

To determine the effect of Cdc42 on FA formation, we transiently transfected TRCs with 

a Cdc42-GFP plasmid and plated them on a >100 pN surface. After 4 h of cell plating, we fixed 
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and immunostained TRCs with primary anti-vinculin antibody to visualize FAs. Remarkably, 

TRCs transfected with Cdc42-GFP plasmid, in addition to spreading, were able to form focal 

adhesions (Supplementary Fig. 11). FA area quantification shows the number of adhesions 

similar to control cells (Supplementary Fig. 11b, Fig. 3b). Conversely, when Cdc42 was knocked 

down in control cells with siRNA #1, they exhibited FA formation trend similar to TRCs 

(Supplementary Fig. 11b and Fig. 3c). Therefore, Cdc42 also has a role in FA assembly in TRCs 

in addition to TRC spreading. 

3.5 Overexpression of Cdc42 rescues sensitivity to molecular tension cues 

Finally, we tested whether the overexpression of Cdc42 can restore TRCs’ sensitivity to 

mechanical cues. After transiently transfecting freshly isolated TRCs with Cdc42-GFP plasmid, 

GFP positive cells were collected using fluorescence activated cell sorting and applied to 

molecular tension surfaces with Ttol values of 43 pN, 56 pN, and >100 pN (Fig. 4a).  Cdc42-

overexpressing TRCs increased cell spreading with increasing Ttol, similar to control cells (Fig. 

4b, blue bars). In addition, we computed CSI of TRCs on different Ttol surfaces and found that 

CSI values decreased with increasing Ttol suggesting the increase in protrusions leading to a more 

irregular cell spreading pattern with higher tension surfaces, similar to control cells (Fig. 4b, 

green bars). 

 

4. DISCUSSION 

Our TGT platform allows us to control the cell’s mechanical environment at the single 

bond force level. This not only increased our understanding of integrin signaling [11,15,21] but 

also revealed force relevance of various mechanosensitive ligand-receptor interactions including 
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notch [17,22], selectins [23,24], T-cell receptors [25], and B cell receptor activation [26]. 

Because TRCs have been shown to depend on αvβ3 integrins to adhere and grow in a soft-3D-

fibrin-gel system [9], we engineered TGT constructs to offer the same ligands (cyclic-RGDfK 

peptide) specific to αvβ3 integrins [14] to measure molecular forces exerted during cell adhesion 

and capture their cell spreading response. It remains to be explored if there is any difference in 

TRC adhesion and spreading through non-RGD integrins (e.g., LVD-binding integrins, αA 

domain integrins, and non- αA domain integrins) [27].  

Previous studies have shown that cell spreading and gene regulation are modulated by the 

bulk stiffness of the underlying substrate [28,29]. However, the mechanism connecting the 

substrate stiffness to cell spreading and consequently fate-determination remain unresolved. 

Because cell spreading is known to be strongly coupled with cellular traction force generation 

[21,30], we recently investigated if capping the molecular forces at a predetermined value at the 

single integrin level has any impact on cell spreading and found B16-F1 control cells, together 

with many other cell lines, progressively increase spreading with the increase of single-

molecular tension cues [12]. This evidence strongly suggests that ultimately the tension tolerance 

of single bonds can dictate the differential spreading response. Therefore, at the most 

fundamental level, the rigidity sensing and resultant changes in cell spreading can occur by 

sensing the single-molecular forces across ligand-receptor bonds. In this work, we showed that 

highly tumorigenic TRCs, a subpopulation of B16-F1 control cells, exhibit an unusual behavior 

of suppressed spreading. When we plated TRCs on different molecular tension tolerance 

surfaces, they did not change their spreading characteristics. The inability to spread and sense the 

tension cues are due to the reduced expression of Cdc42. Once Cdc42 expression was restored, 

TRCs were able to spread through FA formation and exhibited molecular tension-dependent 
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spreading just like B16-F1 control cells. It remains to be tested if Cdc42 upregulation has any 

negative effect on the tumorigenicity of TRCs in animal models. 

As TRCs do not spread, one can imagine that TRCs may exert a high cortical tension to 

limit the extent of cell spreading. However, cell stiffening response measurement as a function of 

the bulk stiffness of polyacrylamide hydrogels [31] showed that B16-F1 TRCs are much softer 

than the parent cell line suggesting cortical tension is much lower [31]. We also showed that 

TRCs stiffen with increasing substrate rigidity and such stiffening response is mediated by 

Cdc42 [31]. In integrin-mediated mechanotransduction, downstream focal adhesion kinase 

(FAK) is one of the molecules that controls Cdc42 activity [32]. Recently, downregulation of 

FAK has been reported to regulate histone 3 lysine residue 9 (H3K9) demethylation via Cdc42 

[33], providing a potential link between Cdc42 and TRC self-renewal. However, the role of 

Cdc42 in translating outside physical cues into meaningful intracellular signals and its 

contribution to regulating cell spreading and self-renewal was not well understood. In this work, 

we showed that Cdc42 can control focal adhesion maturation and cell spreading in response to 

molecular tension cues received through single integrins, and that both processes are severely 

perturbed in TRCs. Future studies will reveal whether this unique feature is shared by all TRCs 

irrespective of tumor origin. 
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FIGURE LEGENDS 

Figure 1. TRCs do not spread on any TGT surfaces. a, A schematic of a cell on a TGT 

surface. TGTs with varying Ttol ranging from 12 to 56 pN were immobilized on biotinylated 

BSA passivated glass surfaces via biotin-neutravidin interactions. Biotinylated cyclic-RGDfK 

peptide, immobilized directly on the surface, was represented as >100 pN. b, TRCs adhere to 

surfaces with Ttol ≥ 43 pN. Interestingly, TRCs do not spread on any TGT surfaces. c, Projected 

cell area of TRCs (n=33, 33, 38, 35 for 43 pN, 50 pN, 56 pN, and >100 pN respectively) are 

presented in a box-and-whisker plot showing no significant changes across any TGT surfaces (p 

values are >0.09, 0.07 and 0.99 for 43 pN and 50 pN, 50 pN and 56 pN, and 56 pN and >100 pN, 

respectively). d, A box-and-whisker plot shows a dimensionless parameter-CSI of cells on 

varying Ttol surfaces. No significant changes in CSI values were observed across any TGT 

surfaces (p values are >0.78, 0.47, 0.29 for 43 pN and 50 pN, 50 pN and 56 pN, and 56 pN and 

>100 pN, respectively). 

 

Figure 2. Single-mRNA-transcript statistics revealed a dissimilarity in RhoA and Cdc42 

expression in TRCs leading to suppression in cell spreading. 

a, Representative images showing mRNA-transcript statistics of RhoA, Rac1, and Cdc42 in 

single control cells and TRCs. b, Correlation analysis between RhoA and Cdc42 transcripts (top) 

and  RhoA and Rac1 transcripts (bottom) is shown here. RhoA and Cdc42 expression in control 

cells are tightly correlated while TRCs tend to exhibit a heterogeneous expression pattern. Each 

dot represents a single cell (ρ, Pearson correlation coefficient). c, RhoA: Cdc42 and RhoA: Rac1 

in control cells and TRCs are significantly different (p< 1.35x10-58 and 5.86x10-13 for RhoA: 

Cdc42 and RhoA: Rac1 respectively). 
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Figure 3. TRCs’ inability to spread corresponds to very few focal adhesions but can be 

restored by Cdc42 overexpression. a, Quantification of TIRF microscopy images show very 

dissimilar FA formation of control cells and TRCs expressing mCherry-vinculin. Color bar 

represents FA intensity relative to maximum intensity. b-c, Histogram plot of FA area in control 

cells and TRCs is shown here after 1 hour (n= 10 for both control cells and TRCs) and 4 hour 

(n= 10 and 15 for control cells and TRCs respectively) of cell plating. The number of FAs with 

area ≥1.5 μm2 per cell in control cells was significantly different between 1 hour and 4 hour 

(p<0.02), but not in TRCs (p>0.44) (insets). d, Representative images of TRCs with 

overexpression of Rac1 and Cdc42 show that Cdc42 alone, but not Rac1, can facilitate cell 

spreading in TRCs with filopodia-like extensions (inset). A TRC not transfected with Cdc42 did 

not spread (arrowhead, DIC image; cell boundary, fluorescence image). e, Single mRNA-

transcripts were quantified after transient overexpression of Cdc42 in TRCs. A representative 

image of Cdc42-overexpressed-TRC is shown (left). A plot of CSI vs. Cdc42 density is shown in 

blue representing overexpressed Cdc42 (n=46, Pearson’s correlation coefficient ρ= -0.62) and 

red representing endogenous Cdc42 transcripts in TRCs (n=168, ρ=0.07). A clear threshold of ~ 

25 Cdc42 transcripts per projected cell area is observed for TRC spreading initiation. 

 

Figure 4. Overexpression of Cdc42 in TRCs causes increasing cell spreading capability 

with increasing Ttol. a, TRCs transfected with Cdc42-GFP can spread more with increasing Ttol. 

b, Summarized data of Cdc42 overexpressed TRC spreading on 43 pN, 56 pN, and >100 pN 

surfaces (n= 22, 29, 22 for 43 pN, 56 pN, and >100 pN surfaces respectively). Significant 

differences in projected cell area were observed between 43pN and 56 pN, and 56 pN and >100 
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pN (p< 2.89x10-8 and 5.43x10-6 respectively). Similarly, significant differences in CSI between 

43pN and 56 pN, and 56 pN and >100 pN were observed (p< 0.04 and 9.33x10-4 respectively). 
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EXPERIMENTAL PROCEDURES 

TRC generation in 3D fibrin gels 

Fibrinogen and thrombin (Reagent Proteins), isolated from Salmon, were used for 

making the 3D-fibrin-gel cell culture. Generation of TRCs with B16-F1 cells, described 

elsewhere [1], were carried out with minor modification. Briefly, fibrinogen was diluted to 2 

mg/ml with T7 buffer (50 mM Tris, 150 mM NaCl, pH adjusted to 7.4). 1:1 ratio of fibrinogen 

and cell solution mixture finally resulted in 1 mg/ml fibrinogen (90 Pa gel). 3000 cells were 

seeded in each of the 96 wells and activated with 100 U/ml thrombin. The 96-well plate was then 

placed into 37°C cell culture incubator for 15 min. Lastly, 200 µl cell culture medium was added 

into each well. Fresh culture medium was exchanged every two days. TRCs were freshly isolated 

from 3D fibrin gels on day 5 for experiments. 

Treatments, constructs and cell transfection  

Cells were transfected in 6-well dishes (9.6 cm2 well area) with 2.5 µg plasmid DNA and 

incubated overnight using Lipofectamine LTX with Plus reagent (Invitrogen) following 

manufacturer’s protocol. For monitoring focal adhesions, a plasmid expressing mCherry-vinculin 

was transfected in control and TRCs. Overexpression of RhoA-EGFP, Rac1-EGFP, and Cdc42-

EGFP was carried out with plasmids available from Addgene (plasmid # 23224, 12980, and 

12975 respectively). Vector pEGFP-N1 from Clontech was used as a control. For plasmid 

transfection in TRCs, freshly isolated TRCs from 3D fibrin gels were plated on a 6 well tissue 

culture dish. After waiting for 4 hours to allow cells to adhere to the surface, cells were 

transfected with plasmids. After overnight transfection with plasmids, cells were detached from 

the surface by Trypsin free EDTA solution. Trypsin was specifically not used in the assay as 
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trypsin digests cell surface proteins including integrins. Isolated cells were plated on glass cover 

slides engineered with different tension tethers. Cells were incubated on the cover slides for 1 to 

4 hours before imaging. Cell imaging of TRCs was carried out within 24 hours of isolation from 

the 3D fibrin gel unless stated otherwise.  

TIRF microscopy and focal adhesion quantification  

Control cells and TRCs expressing mCherry-vinculin were seeded on chambered slides 

passivated by biotin-BSA, incubated with NeutrAvidin, and functionalized by biotinylated 

cyclic-RGDfK (Peptides International). Images were captured by an inverted epifluorescence 

microscope (Nikon Eclipse Ti stabilized by Perfect Focus System) equipped with a 100x NA 

1.49 (Nikon APO x100 oil) TIRF objective, a cooled EMCCD camera (Andor DU897), an ASI 

motorized stage is used for x-y-z position control, and an Agilent laser system (MC400B) with 

fiber-coupled 561 laser to illuminate the sample. The software for data acquisition was Nikon 

Elements. For fluorescence imaging, a quad-band dichroic mirror (Chroma, ZT405-488-561-

640RPC) and a band-pass emission filter set (600/50) were used for this study. The microscope 

is also equipped with live cell imaging chamber with temperature controls. 

Individual FAs and their characteristics were quantified following methods described 

earlier [2,3]. Quantification of FA morphology was carried out through a custom MATLAB 

(Mathworks) program. Fluorescence images were first high-pass filtered, and then used to create 

binary masks marking FAs. Masks were generated using a threshold equal to 65% of the 

maximum image brightness. A segmentation algorithm was used to label and measure each FA 

separately, with regions smaller than 10 pixels assumed to be noise. Segmentation allowed 

simple quantification of focal adhesion area. Subsequently additional FA properties like aspect 

ratios were quantified. A best-fit-ellipse was applied to each focal adhesion, allowing 
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quantification of each FA aspect ratio. Aspect ratio is defined as the length-ratio of the major 

axis to the minor axis. 

Immunofluorescence 

For immunofluorescence microscopy, cells were fixed in PBS containing 4% 

paraformaldehyde, permeabilized with 0.25% Triton X-100, and blocked in PBS containing 2% 

BSA for 1 hour at room temperature as described earlier [4]. Cells were incubated with primary 

antibody (Rabbit anti-vinculin, Abcam; Rabbit anti-phospho-Rac1/Cdc42 (Ser71), Bioss 

Antibodies) at 1:200 dilution followed by incubation with donkey anti-rabbit secondary antibody 

conjugated with Alexa 647 (Abcam) at a dilution of 1:400. 

Quantitative real-time PCR analysis 

Total RNA was extracted and purified using Qiagen’s RNeasy Mini Kit (Qiagen; cat no. 

217004). Purified RNA quantity was measured using a NanoDrop spectrophotometer. mRNA 

was then converted to cDNA using the BioRad iscript cDNA synthesis kit (Bio-Rad 

Laboratories, Hercules, CA; cat no. 170-8890). qPCR was performed using Power SYBR Green 

PCR Master Mix (Applied Biosystems, Warrington, UK; cat no. 4367659). RhoA, Rac1, and 

Cdc42 mRNA expressions were examined. For relative mRNA analysis, the cycle threshold (CT) 

value for samples was determined. These values were normalized with the comparative CT 

method with elongation factor alpha1 (Ef1) for relative gene-expression quantification. The 

primer sequences are shown in Table S1. 

RNA interference  
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Cells were transfected with Cdc42 siRNA constructs using Lipofectamine 2000 

(Invitrogen) as per manufacturer’s protocol. Transfected cells were cultured in 24-well plates and 

assayed 48 hour post transfection. Two Cdc42 siRNA constructs were purchased from Invitrogen 

(ID # 66023 and 161124). The negative control siRNA was also purchased from Invitrogen (ID 

#103860). The construct sequences are provided in Table S2. 

Single molecule FISH to visualize and quantify mRNA 

For in situ hybridization, amine functionalized DNA probes for RhoA, Rac1, and Cdc42 

mRNA were designed with Stellaris® Probe Designer version 4.0 available from 

http://www.biosearchtech.com/ (Biosearch Technologies). The amine groups of RhoA, Rac1, 

and Cdc42 probes were then coupled to the fluorophores Cy3 NHS Ester (GE Healthcare Life 

Sciences), Alexa 594 NHS Ester (Invitrogen), and Cy5 NHS Ester (GE Healthcare Life 

Sciences) respectively, according to the dye manufacturers’ recommendations. In a separate 

experiment where overexpressed Cdc42 mRNAs alone were counted, amine reactive Cdc42 

probes were conjugated with Cy3 NHS Ester dyes (GE Healthcare Life Sciences). The probes 

were precipitated twice in EtOH to remove free dye and then HPLC purified on a Phenomenex 

Oligo Clarity-RP C18 column using a 20-60% linear gradient of 50mM TEAA:MeOH to 

separate fluorophore-coupled oligos. Cells were seeded on glass surfaces, passivated by biotin-

BSA, incubated with NeutrAvidin, and functionalized by RGDfK (Peptides International). The 

cells were then fixed with 4% formaldehyde for 10 min at room temperature, washed with 1x 

PBS, and permeabilized overnight with freshly prepared 70% ethanol. The following morning, 

the cells were rehydrated with a solution of 2x SSC and 10% formamide followed by a 2x SSC 

wash before in situ hybridization. The hybridization reaction was then carried out with 

hybridization buffer containing 10% dextran sulfate, 0.02% RNase-free BSA, 50 μg E.coli 

http://www.biosearchtech.com/
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tRNA, 2 mM vanadyl-ribonucleoside complex, 10% formamide, 2x SSC, and FISH probes 

specific for RhoA, Rac1 and Cdc42. Following in situ hybridization, cells were washed at least 

twice for 30 min at 37 °C using a wash buffer containing 10% formamide and 2x SSC to remove 

unbound probes and kept at 4 °C in 2X SSC until imaging. During imaging, a mounting medium 

containing an oxygen-scavenging system with 10 mM Tris HCl pH 8.0, 1% glucose, glucose 

oxidase, catalase, and 2x SSC was used. Cells were imaged using a Zeiss Axiovert 200M 

inverted fluorescence microscope (Zeiss, Germany), equipped with a cooled EMCCD camera 

(Photometrics, Cascade 512), motorized stage, Xcite illuminator, and a x100 NA 1.46 oil 

immersion objective. Z-stack images were taken automatically covering entire 3D volume of the 

cells with 0.3 microns between each slices and an exposure time of 500 milliseconds. To 

quantify number of mRNAs, we followed the method and software described in a previous study 

[5]. 

Data analysis algorithm for single mRNA quantification 

When Cdc42 is overexpressed in TRCs, quantification of single mRNA transcripts becomes 

difficult due to the close proximity of mRNA molecules. Therefore, to quantify overexpressed 

Cdc42 mRNA transcripts in TRCs, we utilized data analysis algorithm as described here [6]. 
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SUPPLEMENTARY TABLES 

Supplementary Table 1. qPCR primer sequences. 

 Forward Reverse 

Cdc42 5'-CTC CGC CCT CAC ACA GAA AG-3' 5'-AAG ACA CGA AGA TGC CCC AG-3' 

Rac1 5’-GGA GAC GGA GCT GTT GGT AAA-3’ 5’-CTT CTT GAC AGG AGG GGG AC-3’ 

RhoA 5’-AAT GAA GCA GGA GCC GGT AA-3’ 5’-GTA CCC AAA AGC GCC AAT CC-3’ 

Ef1α 5’-ATA TTA CCC CTA ACA CCT GG-3’ 5’-CTG TGA CAG ATT TTT GGT CAA-3’ 

 

Supplementary Table 2. siRNA sequences. 

 Sense Anti-sense 

Control 5'-AGUACUGCUUACGAUACGGTT-3' 5'- CCGUAUCGUAAGCAGUACUTT-3' 

Cdc42 siRNA #1 5’-GGGCAAGAGGAUUAUGACATT-3’ 5’-UGUCAUAAUCCUCCUCUUGCCCTG-3’ 

Cdc42 siRNA #2 5’- CCGCUAAGUUAUCCACAGATT-3’ 5’-UCUGUGGAUAACUUAGCGGTC-3’ 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Cell spreading area in B16-F1 control cells increases with increasing 

molecular tension tolerances. Projected area of cell spreading on each TGT surfaces is presented 

here as a box-whisker plot. Number of data points on each molecular tension tolerance are n=64, 

63, 46, 48 for 43 pN, 50 pN, 56 pN, and >100 pN surfaces respectively. Data replotted from 

Chowdhury et al., 2015 [7]. 
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Supplementary Figure 2. Similar to B16-F1 cells, cell spreading area in B16-F10 control cells, 

but not in TRCs, increases with increasing molecular tension tolerances. (a) Representative 

images of B16-F10 control cells and TRCs on 43 and 56 pN surfaces. (b) A box-and-whisker 

plot shows projected cell spreading area of B16-F10 control cells and TRCs. Cell spreading area 

of B16-F10 control cells (n=30, 24 for 43 pN and 56 pN surface respectively) increased with 

increasing tension tolerances while TRCs (n=22, 18 for 43 pN and 56 pN surface respectively) 

did not spread across tension tolerance surfaces. Significant change in cell area in B16-F10 

control cells between 43 pN and 56 pN surface was observed (p<2.54x10-5). On the other hand, 

projected cell spreading area for TRCs did not show any significant differences between 43 pN 

and 56 pN surfaces (p >0.24). (c) A box-and-whisker plot shows CSI values for B16-F10 control 

and TRCs. For B16-F10 control cells, significant changes were observed between 43 pN and 56 

pN TGT surface (p< 0.003) while CSI values for TRCs did not change significantly between 43 

pN and 56 pN (p> 0.88). Scale bar, 50 μm. 
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Supplementary Figure 3. Unlike control cells, TRCs do not spread on natural ligands like 

fibronectin and type-I collagen coated surfaces. (a) Cell were plated on rigid dishes coated with 

fibronectin (10 μg/ml) and type-I collagen (40 μg/ml). TRCs do not spread on any of the natural 

ligands. (b)  Control cell spreading area is significantly different than TRCs on both fibronectin 

(n=26 and 32 for control and TRCs respectively; p< 3.28x10-12) and type-I collagen (n=30 and 

32 for control and TRCs respectively; p< 7.73x10-16). Similar change in CSI values were also 

observed between control cells and TRC (p< 1.95x10-12 and p<1.48x10-10 for fibronectin and 

type-I collagen respectively). Blue bars and red bars represent projected cell area of control cells 

and TRCs respectively. 
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Supplementary Figure 4. Quantitative real-time PCR displays downregulation of Rac1 and 

Cdc42. Data from three independent experiments.  Data represent mean± s.e.m.  
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Supplementary Figure 5. Histogram plot of FA aspect ratio in control cells and TRCs after 1 

hour (n= 10 for both control cells and TRCs) and 4 hour (n= 10 and 15 for control cells and 

TRCs respectively) of cell plating.  Average FA aspect ratio in control cells was significantly 

increased at 4 hour (p<0.001) (left inset). However, no significant changes in FA aspect ratio 

were observed in TRCs between 1 hour and 4 hour (p>0.32) (right inset). 
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Supplementary Figure 6. Transient overexpression of Cdc42, but not Rac1, induced cell 

spreading in TRCs. A stacked bar plot indicates a vast majority of TRCs spread with 

overexpression of Cdc42. However, no cell spreading was observed with Rac1 overexpression. 
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Supplementary Figure 7. Cdc42 dependent cell spreading in TRCs. (a-b) DIC and fluorescent 

images of representative TRCs with no fluorescence, low fluorescence, and high fluorescence are 

shown. White lines were arbitrarily selected for quantifying fluorescent intensities. (c) 

Corresponding line plots are shown. TRCs do not spread when Cdc42 expression is low. It is 

only when Cdc42 is highly expressed TRCs exhibit cell spreading indicating a possible Cdc42 

threshold in TRC spreading. Vertical red lines indicate cell edges. 
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Supplementary Figure 8. Transient overexpression of Rac1 in TRCs induces partial cell 

spreading in ~20% of cells. A small lamellipodia like extensions, known to be promoted by 

Rac1, is seen in the inset. 
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Supplementary Figure 9. Transient overexpression of RhoA and GFP do not induce cell 

spreading response in TRCs. (a) Representative fluorescent and DIC images (inset) of TRCs 

overexpressing RhoA and GFP is shown. (b) No TRCs were found to be spread with 

overexpression of RhoA and GFP. (n= 34, 8 for RhoA and GFP respectively) 
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Supplementary Figure 10. siRNA mediated Cdc42 knock down in control cells. (a-b) Control 

cells exhibit round morphology, similar to TRCs, with siRNA mediated Cdc42 knock down. 

Corresponding cell morphology and data summary after Cdc42 knockdown with two different 

siRNAs are shown. Non-targeting control siRNA did not interfere with cell spreading in control 

cells. 
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Supplementary Figure 11. Overexpression of Cdc42 in TRCs, in addition to cell spreading, can 

restore focal adhesion assembly. (a) Overexpression of Cdc42 (Cdc42: GFP; inset) can facilitate 

FA formation in TRCs. Similarly, control cells lose their ability to form FAs when Cdc42 is 

silenced. Cells were fixed and stained with anti-vinculin primary antibody. Data summary shows 

number of FAs ≥1.5 µm2 per cell (n= 10 and 19 for control and TRCs respectively; mean± 

s.e.m). 
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