93 research outputs found

    Transnasal excerebration surgery in ancient Egypt: Historical vignette

    Get PDF
    Journal ArticleAncient Egyptians were pioneers in many fields, including medicine and surgery. Our modern knowledge of anatomy, pathology, and surgical techniques stems from discoveries and observations made by Egyptian physicians and embalmers. In the realm of neurosurgery, ancient Egyptians were the first to elucidate cerebral and cranial anatomy, the first to describe evidence for the role of the spinal cord in the transmission of information from the brain to the extremities, and the first to invent surgical techniques such as trepanning and stitching. In addition, the transnasal approach to skull base and intracranial structures was first devised by Egyptian embalmers to excerebrate the cranial vault during mummification. In this historical vignette, the authors examine paleoradiological and other evidence from ancient Egyptian skulls and mummies of all periods, from the Old Kingdom to Greco-Roman Egypt, to shed light on the development of transnasal surgery in this ancient civilization. The authors confirm earlier observations concerning the laterality of this technique, suggesting that ancient Egyptian excerebration techniques penetrated the skull base mostly on the left side. They also suggest that the original technique used to access the skull base in ancient Egypt was a transethmoidal one, which later evolved to follow a transsphenoidal route similar to the one used today to gain access to pituitary lesions

    Identification of shared genetic variants between schizophrenia and lung cancer.

    Get PDF
    Epidemiology studies suggest associations between schizophrenia and cancer. However, the underlying genetic mechanisms are not well understood, and difficult to identify from epidemiological data. We investigated if there is a shared genetic architecture between schizophrenia and cancer, with the aim to identify specific overlapping genetic loci. First, we performed genome-wide enrichment analysis and second, we analyzed specific loci jointly associated with schizophrenia and cancer by the conjunction false discovery rate. We analyzed the largest genome-wide association studies of schizophrenia and lung, breast, prostate, ovary, and colon-rectum cancer including more than 220,000 subjects, and included genetic association with smoking behavior. Polygenic enrichment of associations with lung cancer was observed in schizophrenia, and weak enrichment for the remaining cancer sites. After excluding the major histocompatibility complex region, we identified three independent loci jointly associated with schizophrenia and lung cancer. The strongest association included nicotinic acetylcholine receptors and is an established pleiotropic locus shared between lung cancer and smoking. The two other loci were independent of genetic association with smoking. Functional analysis identified downstream pleiotropic effects on epigenetics and gene-expression in lung and brain tissue. These findings suggest that genetic factors may explain partly the observed epidemiological association of lung cancer and schizophrenia

    Interaction testing and polygenic risk scoring to estimate the association of common genetic variants with treatment resistance in schizophrenia

    Get PDF
    Importance About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Design, Setting, and Participants Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n=10 501) and individuals with non-TRS (n=20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r² = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r² = 1.09%; P = .04). Conclusions and Relevance In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance.Funding/Support: This work was supported by Medical Research Council Centre grant MR/ L010305/1, Medical Research Council Program grant MR/P005748/1, and Medical Research Council Project grants MR/L011794/1 and MC_PC_17212 to Cardiff University and by the National Centre for Mental Health, funded by the Welsh Government through Health and Care Research Wales. This work acknowledges the support of the Supercomputing Wales project, which is partially funded by the European Regional Development Fund via the Welsh Government. Dr Pardiñas was supported by an Academy of Medical Sciences Springboard Award (SBF005\1083). Dr Andreassen was supported by the Research Council of Norway (grants 283798, 262656, 248980, 273291, 248828, 248778, and 223273); KG Jebsen Stiftelsen, South-East Norway Health Authority, and the European Union’s Horizon 2020 Research and Innovation Programme (grant 847776). Dr Ajnakina was supported by an National Institute for Health Research postdoctoral fellowship (PDF-2018-11-ST2-020). Dr Joyce was supported by the University College London Hospitals/UCL University College London Biomedical Research Centre. Dr Kowalec received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement (793530) from the government of Canada Banting postdoctoral fellowship programme and the University of Manitoba. Dr Sullivan was supported by the Swedish Research Council (Vetenskapsrådet, D0886501), the European Union’s Horizon 2020 programme (COSYN, 610307) and the US National Institute of Mental Health (U01 MH109528 and R01 MH077139). The Psychiatric Genomics Consortium was partly supported by the National Institute Of Mental Health (grants R01MH124873). The Sweden Schizophrenia Study was supported by the National Institute Of Mental Health (grant R01MH077139). The STRATA consortium was supported by a Stratified Medicine Programme grant to Dr MacCabe from the Medical Research Council (grant MR/L011794/1), which funded the research and supported Drs Pardiñas, Smart, Kassoumeri, Murray, Walters, and MacCabe. Dr Smart was supported by a Collaboration for Leadership in Applied Health Research and Care South London at King’s College Hospital National Health Service Foundation Trust. The AESOP (US) cohort was funded by the UK Medical Research Council (grant G0500817). The Belfast (UK) cohort was funded by the Research and Development Office of Northern Ireland. The Bologna (Italy) cohort was funded by the European Community’s Seventh Framework program (HEALTH-F2-2010–241909, project EU-GEI). The Genetics and Psychosis project (London, UK) cohort was funded by the UK National Institute of Health Research Specialist Biomedical Research Centre for Mental Health, South London and the Maudsley National Health Service Mental Health Foundation Trust (SLAM) and the Institute of Psychiatry, Psychology, and Neuroscience at King’s College London; Psychiatry Research Trust; Maudsley Charity Research Fund; and the European Community’s Seventh Framework program (HEALTH-F2-2009-241909, project EU-GEI). The Lausanne (Switzerland) cohort was funded by the Swiss National Science Foundation (grants 320030_135736/1, 320030-120686, 324730-144064, 320030-173211, and 171804); the National Center of Competence in Research Synaptic Bases of Mental Diseases from the Swiss National Science Foundation (grant 51AU40_125759); and Fondation Alamaya. The Oslo (Norway) cohort was funded by the Research Council of Norway (grant 223273/F50, under the Centers of Excellence funding scheme, 300309, 283798) and the South-Eastern Norway Regional Health Authority (grants 2006233, 2006258, 2011085, 2014102, 2015088, and 2017-112). The Paris (France) cohort was funded by European Community’s Seventh Framework program (HEALTH-F2-2010–241909, project EU-GEI). The Prague (Czech Republic) cohort was funded by the Ministry of Health of the Czech Republic (grant NU20-04-00393). The Santander (Spain) cohort was funded by the following grants to Dr Crespo-Facorro: Instituto de Salud Carlos III (grants FIS00/3095, PI020499, PI050427, and PI060507), Plan Nacional de Drogas Research (grant 2005-Orden sco/3246/2004), SENY Fundatio Research (grant 2005-0308007), Fundacion Marques de Valdecilla (grant A/02/07, API07/011) and Ministry of Economy and Competitiveness and the European Fund for Regional Development (grants SAF2016-76046-R and SAF2013-46292-R). The West London (UK) cohort was funded by The Wellcome Trust (grants 042025, 052247, and 064607)

    Genome-wide regional heritability mapping identifies a locus within the<i> TOX2</i> gene associated with Major Depressive Disorder

    Get PDF
    Background: Major depressive disorder (MDD) is the second largest cause of global disease burden. It has an estimated heritability of 37%, but published genome-wide association studies have so far identified few risk loci. Haplotype-block-based regional heritability mapping (HRHM) estimates the localized genetic variance explained by common variants within haplotype blocks, integrating the effects of multiple variants, and may be more powerful for identifying MDD-associated genomic regions. Methods: We applied HRHM to Generation Scotland: The Scottish Family Health Study, a large family- and population-based Scottish cohort (N = 19,896). Single-single nucleotide polymorphism (SNP) and haplotype-based association tests were used to localize the association signal within the regions identified by HRHM. Functional prediction was used to investigate the effect of MDD-associated SNPs within the regions. Results: A haplotype block across a 24-kb region within the TOX2 gene reached genome-wide significance in HRHM. Single-SNP- and haplotype-based association tests demonstrated that five of nine genotyped SNPs and two haplotypes within this block were significantly associated with MDD. The expression of TOX2 and a brain-specific long noncoding RNA RP1-269M15.3 in frontal cortex and nucleus accumbens basal ganglia, respectively, were significantly regulated by MDD-associated SNPs within this region. Both the regional heritability and single-SNP associations within this block were replicated in the UK–Ireland group of the most recent release of the Psychiatric Genomics Consortium (PGC), the PGC2–MDD (Major Depression Dataset). The SNP association was also replicated in a depressive symptom sample that shares some individuals with the PGC2–MDD. Conclusions: This study highlights the value of HRHM for MDD and provides an important target within TOX2 for further functional studies

    Rare coding variants in ten genes confer substantial risk for schizophrenia

    Get PDF
    Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, PPeer reviewe

    A Rare Functional Noncoding Variant at the GWAS-Implicated MIR137/MIR2682 Locus Might Confer Risk to Schizophrenia and Bipolar Disorder

    Get PDF
    Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in >100 susceptibility loci; however, the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137) and MIR2682 (miR2682), two microRNA genes important for neuronal function. We sequenced ∼6.9 kb MIR137/MIR2682 and upstream regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele frequency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p = 0.021 for MAF < 0.5%, p = 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal p = 4.8 × 10−4). We further identified its risk allele T in 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572 SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP, respectively. The risk allele T of 1:g.98515539A>T reduced enhancer activity of its flanking sequence by >50% in human neuroblastoma cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor (YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression

    GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores

    Get PDF
    Objective: More than 90% of people who attempt suicide have a psychiatric diagnosis;however, twin and family studies suggest that the genetic etiology of suicide attempt is partially distinct from that of the psychiatric disorders themselves. The authors present the largest genome-wide association study (GWAS) on suicide attempt, using cohorts of individuals with major depressive disorder, bipolar disorder, and schizophrenia from the Psychiatric Genomics Consortium. Methods: The samples comprised 1,622 suicide attempters and 8,786 nonattempters with major depressive disorder;3,264 attempters and 5,500 nonattempters with bipolar disorder;and 1,683 attempters and 2,946 nonattempters with schizophrenia. A GWAS on suicide attempt was performed by comparing attempters to nonattempters with each disorder, followed by a meta-analysis across disorders. Polygenic risk scoring was used to investigate the genetic relationship between suicide attempt and the psychiatric disorders. Results: Three genome-wide significant loci for suicide attempt were found: one associated with suicide attempt in major depressive disorder, one associated with suicide attempt in bipolar disorder, and one in the meta-analysis of suicide attempt in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. No significant associations were found in the meta-analysis of all three disorders. Polygenic risk scores for major depression were significantly associated with suicide attempt in major depressive disorder (R-2=0.25%), bipolar disorder (R-2=0.24%), and schizophrenia (R-2=0.40%). Conclusions: This study provides new information on genetic associations and demonstrates that genetic liability for major depression increases risk for suicide attempt across psychiatric disorders. Further collaborative efforts to increase sample size may help to robustly identify genetic associations and provide biological insights into the etiology of suicide attempt

    GWAS of Suicide Attempt in Psychiatric Disorders Identifies Association With Major Depression Polygenic Risk Scores

    Get PDF
    Objective: Over 90% of suicide attempters have a psychiatric diagnosis, however twin and family studies suggest that the genetic etiology of suicide attempt (SA) is partially distinct from that of the psychiatric disorders themselves. Here, we present the largest genome-wide association study (GWAS) on suicide attempt using major depressive disorder (MDD), bipolar disorder (BIP) and schizophrenia (SCZ) cohorts from the Psychiatric Genomics Consortium. Method: Samples comprise 1622 suicide attempters and 8786 non-attempters with MDD, 3264 attempters and 5500 non-attempters with BIP and 1683 attempters and 2946 non-attempters with SCZ. SA GWAS were performed by comparing attempters to non-attempters in each disorder followed by meta-analyses across disorders. Polygenic risk scoring was used to investigate the genetic relationship between SA and the psychiatric disorders. Results: Three genome-wide significant loci for SA were found: one associated with SA in MDD, one in BIP, and one in the meta-analysis of SA in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. No significant associations were found in the meta-analysis of all three disorders. Polygenic risk scores for major depression were significantly associated with SA in MDD (R2=0.25%, P=0.0006), BIP (R2=0.24%, P=0.0002) and SCZ (R2=0.40%, P=0.0006). Conclusions: This study provides new information on genetic associations and demonstrates that genetic liability for major depression increases risk for suicide attempt across psychiatric disorders. Further collaborative efforts to increase sample size hold potential to robustly identify genetic associations and gain biological insights into the etiology of suicide attempt
    corecore