348 research outputs found

    A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques

    Full text link
    We present a circuit model to describe the electron transport through a domain wall in a ferromagnetic nanowire. The domain wall is treated as a coherent 4-terminal device with incoming and outgoing channels of spin up and down and the spin-dependent scattering in the vicinity of the wall is modelled using classical resistances. We derive the conductance of the circuit in terms of general conductance parameters for a domain wall. We then calculate these conductance parameters for the case of ballistic transport through the domain wall, and obtain a simple formula for the domain wall magnetoresistance which gives a result consistent with recent experiments. The spin transfer torque exerted on a domain wall by a spin-polarized current is calculated using the circuit model and an estimate of the speed of the resulting wall motion is made.Comment: 10 pages, 5 figures; submitted to Physical Review

    Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes

    Full text link
    We study electron transport through a domain wall in a ferromagnetic nanowire subject to spin-dependent scattering. A scattering matrix formalism is developed to address both coherent and incoherent transport properties. The coherent case corresponds to elastic scattering by static defects, which is dominant at low temperatures, while the incoherent case provides a phenomenological description of the inelastic scattering present in real physical systems at room temperature. It is found that disorder scattering increases the amount of spin-mixing of transmitted electrons, reducing the adiabaticity. This leads, in the incoherent case, to a reduction of conductance through the domain wall as compared to a uniformly magnetized region which is similar to the giant magnetoresistance effect. In the coherent case, a reduction of weak localization, together with a suppression of spin-reversing scattering amplitudes, leads to an enhancement of conductance due to the domain wall in the regime of strong disorder. The total effect of a domain wall on the conductance of a nanowire is studied by incorporating the disordered regions on either side of the wall. It is found that spin-dependent scattering in these regions increases the domain wall magnetoconductance as compared to the effect found by considering only the scattering inside the wall. This increase is most dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure

    Soil conservation II : know your farm.

    Get PDF
    This circular was prepared by O. T. Coleman, Extension Specialist in Soils, in Collaboration with E. T. Itschner, State Club Agent. Acknowledgment is given to A. W. Klemme, Extension Specialist in Soils, for the preparation of Chapter III; to W. R. Tascher, Extension Soil Conservationist, for the preparation of Chapter VI; to John Falloon, Extension Soil Conservationist, for the preparation of Chapter V; and to John Ferguson, Extension Soil Conservationist, for the preparation of Chapter IV. --Page 3."Cooperative Extension Work in Agriculture and Home Economics, University of Missouri, College of Agriculture and the United States Department of Agriculture cooperating.""March, 1939."Title from cover

    Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results

    Get PDF
    We examined the changes to global net primary production (NPP), vegetation biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVMs) obtained from the Inter-Sectoral Impact Model Intercomparison Project. Simulation results were obtained using five global climate models (GCMs) forced with four representative concentration pathway (RCP) scenarios. To clarify which component (i.e., emission scenarios, climate projections, or global vegetation models) contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied to 70 projected simulation sets. At the end of the simulation period, changes from the year 2000 in all three variables varied considerably from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC and SOC projections, GVMs are the main influence on uncertainties (60 % and 90 %, respectively) rather than climate-driving scenarios (RCPs and GCMs). Moreover, the divergence of changes in vegetation carbon residence times is dominated by GVM uncertainty, particularly in the latter half of the 21st century. In addition, we found that the contribution of each uncertainty source is spatiotemporally heterogeneous and it differs among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division becomes cooler (from ca. 80 % in the equatorial division to 40 % in the snow division). Our results suggest that to assess climate change impacts on global ecosystem C cycling among each RCP scenario, the long-term C dynamics within the ecosystems (i.e., vegetation turnover and soil decomposition) are more critical factors than photosynthetic processes. The different trends in the contribution of uncertainty sources in each variable among climate divisions indicate that improvement of GVMs based on climate division or biome type will be effective. On the other hand, in dry regions, GCMs are the dominant uncertainty source in climate impact assessments of vegetation and soil C dynamics

    Study of a Class of Four Dimensional Nonsingular Cosmological Bounces

    Full text link
    We study a novel class of nonsingular time-symmetric cosmological bounces. In this class of four dimensional models the bounce is induced by a perfect fluid with a negative energy density. Metric perturbations are solved in an analytic way all through the bounce. The conditions for generating a scale invariant spectrum of tensor and scalar metric perturbations are discussed.Comment: 16 pages, 10 figure

    Two-stage evolution of mantle peridotites from the Stalemate Fracture Zone, northwestern Pacific

    Get PDF
    This paper reports the results of a mineralogical study of 14 mantle peridotite samples dredged in 2009 from the eastern slope of the northwestern segment of the Stalemate Ridge in the northwestern Pacific during cruise SO201-KALMAR Leg 1b of the R/V Sonne. The sample collection included four serpentinized and silicified dunites and ten variably serpentinized lherzolites. The compositions of primary minerals (clinopyroxene, orthopyroxene, and spinel) change systematically from the lherzolites to dunites. Spinel from the lherzolites shows higher Mg# and lower Cr# values (0.65-0.68 and 0.26-0.33, respectively) compared with spinel from the dunites (Mg# = 0.56-0.64 and Cr# = 0.38-0.43). Clinopyroxene from the lherzolites is less magnesian (Mg# = 91.7-92.4) than clinopyroxene from dunite sample DR37-3 (Mg# = 93.7). Based on the obtained data, it was concluded that the lherzolites of the Stalemate Fracture Zone were derived by 10-12% near-fractional melting of a DMM-type depleted mantle reservoir beneath the Kula-Pacific spreading center. The dunites were produced by interaction of residual lherzolites with sodium- and titaniumrich melt and are probably fragments of a network of dunite channels in the shallow mantle. The moderately depleted composition of minerals clearly distinguishes the lherzolites from the strongly depleted peridotites of the East Pacific Rise and indicates the existence of slow-spreading mid-ocean ridges in the Pacific Ocean during the Cretaceous-Paleogene

    Implications of climate change for agricultural productivity in the early twenty-first century

    Get PDF
    This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified

    A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    Get PDF
    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making

    Multi-objective calibration of RothC using measured carbon stocks and auxiliary data of a long-term experiment in Switzerland

    Get PDF
    Interactions between model parameters and low spatiotemporal resolution of available data mean that conventional soil organic carbon (SOC) models are often affected by equifinality, with consequent uncertainty in SOC forecasts. Estimation of belowground C inputs is another major source of uncertainty in SOC modelling. Models are usually calibrated on SOC stocks and fluxes from long‐term experiments (LTEs), whereas other point data are not used for constraining the model parameters. We used data from an agricultural long‐term (> 65 years) fertilization experiment to test a multi‐objective parameter estimation approach on the RothC model, combining SOC data from different fertilization treatments with microbial biomass, basal respiration and Zimmermann’s fractions data. We also compared two methods to estimate the belowground C inputs: a conventional scaling of belowground biomass from crop harvest yield and an alternative approach based on constant belowground C for cereals measured experimentally in the field. The resulting posterior parameter distributions still suffered from some equifinality; the most stable C pool kinetic constants and composition of exogenous organic matter were the most sensitive parameters. The use of fixed belowground C inputs for cereals improved the model performance, reducing the importance of treatment‐specific parameters and processes. The introduction of microbial biomass and basal respiration data was effective for increasing determination of the calibration, but also suggested a change in the model structure: the microbial biomass pool, which is proportional to the C inputs in the traditional models, could be represented by different microbial physiology functions

    Influence of non-nucleoside reverse transcriptase inhibitors (efavirenz and nevirapine) on the pharmacodynamic activity of gliclazide in animal models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes may occur as a result of HIV infection and/or its treatment. Gliclazide is a widely used drug for the treatment of type 2 diabetes. Efavirenz and nevirapine are widely used non-nucleoside reverse transcriptase inhibitors for the treatment of HIV infection. The role of Efavirenz and nevirapine on the pharmacodynamic activity of gliclazide is not currently known. The objective of this study was to examine the effect of oral administration of efavirenz and nevirapine on blood glucose and investigate their effect on the activity of gliclazide in rats (normal and diabetic) and rabbits to evaluate the safety and effectiveness of the combination.</p> <p>Methods</p> <p>Studies in normal and alloxan induced diabetic rats were conducted with oral doses of 2 mg/kg bd. wt. of gliclazide, 54 mg/kg bd. wt. of efavirenz or 18 mg/kg bd. wt. of nevirapine and their combination with adequate washout periods in between treatments. Studies in normal rabbits were conducted with 5.6 mg/1.5 kg bd. wt. of gliclazide, 42 mg/1.5 kg bd. wt. of efavirenz or 14 mg/1.5 kg bd. wt. of nevirapine and their combination given orally. Blood samples were collected at regular time intervals in rats from retro orbital puncture and by marginal ear vein puncture in rabbits. All the blood samples were analysed for blood glucose by GOD/POD method.</p> <p>Results</p> <p>Efavirenz and nevirapine alone have no significant effect on the blood glucose level in rats and rabbits. Gliclazide produced hypoglycaemic/antidiabetic activity in normal and diabetic rats with peak activity at 2 h and 8 h and hypoglycaemic activity in normal rabbits at 3 h. In combination, efavirenz reduced the effect of gliclazide in rats and rabbits, and the reduction was more significant with the single dose administration of efavirenz than multiple dose administration. In combination, nevirapine has no effect on the activity of gliclazide in rats and rabbits.</p> <p>Conclusion</p> <p>Thus, it can be concluded that the combination of efavirenz and gliclazide may need dose adjustment and care should be taken when the combination is prescribed for their clinical benefit in diabetic patients. The combination of nevirapine and gliclazide was safe. However, further studies are warranted.</p
    corecore