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Abstract. We examined the changes to global net primary production (NPP), vegetation biomass carbon

(VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVMs) obtained from the

Inter-Sectoral Impact Model Intercomparison Project. Simulation results were obtained using five global cli-

mate models (GCMs) forced with four representative concentration pathway (RCP) scenarios. To clarify which

component (i.e., emission scenarios, climate projections, or global vegetation models) contributes the most to

uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clus-

tering were applied to 70 projected simulation sets. At the end of the simulation period, changes from the year

2000 in all three variables varied considerably from net negative to positive values. ANOVA revealed that the

main sources of uncertainty are different among variables and depend on the projection period. We determined

that in the global VegC and SOC projections, GVMs are the main influence on uncertainties (60 % and 90 %,

respectively) rather than climate-driving scenarios (RCPs and GCMs). Moreover, the divergence of changes in

vegetation carbon residence times is dominated by GVM uncertainty, particularly in the latter half of the 21st

century. In addition, we found that the contribution of each uncertainty source is spatiotemporally heterogeneous

and it differs among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies

along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division be-

comes cooler (from ca. 80 % in the equatorial division to 40 % in the snow division). Our results suggest that

to assess climate change impacts on global ecosystem C cycling among each RCP scenario, the long-term C

dynamics within the ecosystems (i.e., vegetation turnover and soil decomposition) are more critical factors than

photosynthetic processes. The different trends in the contribution of uncertainty sources in each variable among

climate divisions indicate that improvement of GVMs based on climate division or biome type will be effective.

On the other hand, in dry regions, GCMs are the dominant uncertainty source in climate impact assessments of

vegetation and soil C dynamics.
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1 Introduction

Terrestrial ecosystems play important roles in the C cycling

of climate systems and provide various ecosystem services

(e.g., water supply and wild habitats for biodiversity); how-

ever, these ecosystem functions are threatened by climate

change (Scholze et al., 2006; Mooney et al., 2009; Ost-

berg et al., 2013). Previous model intercomparison studies

(e.g., VEMAP (Kittel et al., 1995), dynamic global vege-

tation models (DGVMs) (Cramer et al., 1999; Sitch et al.,

2008), Coupled Carbon Cycle Climate Model Intercompar-

ison Project (C4MIP) (Friedlingstein et al., 2006), and The

fifth phase of the Coupled Model Intercomparison Project

(CMIP5) Arora et al., 2013; Jones et al., 2013) have demon-

strated a lack of coherence in future projections of terrestrial

C cycling for different global land models because of differ-

ences in their representations of system processes. For cli-

mate change impact assessments, the cascade of uncertainty

sources must be considered (Wilby and Dessai, 2010; Fal-

loon et al., 2014). Greenhouse gas concentrations, tempera-

ture, and precipitation are critical factors in determining the

feedback of terrestrial ecosystems in response to atmospheric

carbon dioxide (CO2) (Seneviratne et al., 2006). These fac-

tors could become more important for terrestrial ecosystem

C cycling under future higher CO2 concentrations and cli-

mate change conditions (Gerten et al., 2005). The recent

International Panel on Climate Change assessments (AR5)

took anthropogenic CO2 emission uncertainties into account

in a representative concentration pathway (RCP) scenario

(Moss et al., 2010; Van Vuuren et al., 2011). Future projected

changes in temperature and precipitation have large spatial

and temporal uncertainties even for the same radiative forc-

ing levels because of the different structures and parameters

used in global climate models (GCMs) (Knutti and Sedláček,

2013). These differences could affect the global C budget

of terrestrial ecosystems. Global vegetation models (GVMs)

such as (DGVMs and components of earth system models

also have inherently large uncertainties because of differ-

ences in model structures and parameters (e.g., Friedlingstein

et al., 2006; Sitch et al., 2008). Thus, various sources of un-

certainty may cause divergence in projected C cycling.

For climate impact assessments and adaptations, different

levels of uncertainty sources should be considered in order

to manage climate change risks. Such information in im-

pact assessments may benefit from experience gained in the

climate-modeling community and vice versa (Falloon et al.,

2014). For example, recently, the likelihood of the occur-

rence of large Amazon dieback in this century has become

lower in simulation studies (Cox et al., 2000; Sitch et al.,

2008; Cook et al., 2012) because of the reduction of un-

certainties in the projected precipitation in Amazon regions

among GCMs (Sitch et al., 2008; Poulter et al., 2010; Cook

et al., 2012). However, the improvement of vegetation pro-

cesses in this region could result in the improvement of lo-

cal vegetation–climate feedbacks, which might contribute to

changes in temperature and precipitation in this region (Sh-

iogama et al., 2011). At the global scale, in earth system

models in the CMIP5 study, the sensitivities in global land

climate–carbon feedback varied considerably (Arora et al.,

2013). The reduction of C budget uncertainties in ecosystem

models could serve to reduce climate change uncertainties,

particularly regarding the climate sensitivity of earth system

models. In addition, determining which uncertainty source

is dominant in the projection is an important aspect of rec-

ognizing the limitations of ecosystem C cycling projections

and climate impact assessments via GVM and GCM. How-

ever, to date, how each uncertainty source (CO2 concentra-

tion, GCM, and GVM) is important in regions and periods

affected by climate change still remains to be clarified in cli-

mate impact research.

In ecosystem climate impact assessments, how the uncer-

tainties of climate impacts matter is still a challenging is-

sue, in part due to the lack of standardized impact evalua-

tion protocols. The Inter-Sectoral Impact Model Intercom-

parison Project (ISI-MIP) is the first attempt to apply ensem-

bles of both impact and climate models to obtain robust fu-

ture assessments (Warszawski et al., 2014). In assessments

of climate impacts on ecosystem functions, regionality is ex-

tremely important for the severity and timing of impacts ow-

ing to the different types of climate change in each region

and the presence of different ecosystem types in different ar-

eas (Warszawski et al., 2013; Friend et al., 2014). For com-

prehensive climate impact assessments on ecosystems, it is

necessary to possess spatiotemporal information for which

uncertainty sources can be chosen or ignored, for which

some processes contributed to uncertainty, and for which it

is known how the contribution of each uncertainty source

changed with time. Separation of the different sources of un-

certainty in projections of ecosystem models in various as-

pects can be used to comprehend the uncertainties and risks

in climate impacts on ecosystem conditions and C cycling.

In this study, we examined the C dynamics in six GVMs

obtained from the ISI-MIP. In the ISI-MIP, these GVMs were

simulated using five GCMs forced with four newly devel-

oped climate scenarios, i.e., RCP in the CMIP5 experiments

(Taylor et al., 2012). In this model intercomparison project,

an orthogonal experimental design with RCP, GCM, and

GVM was adopted. In total, 70 independent simulation sets

were used in this study, which enabled us to evaluate the rel-

ative contributions to total uncertainty of the projection fac-

tors (emission scenarios, climate projections, and GVMs) in

terrestrial C cycling. Our objective was to explore the com-

prehensive uncertainties in future global and regional terres-

trial C projections by decomposing the uncertainty sources

in terms of time, space, and processes.

Earth Syst. Dynam., 6, 435–445, 2015 www.earth-syst-dynam.net/6/435/2015/



K. Nishina et al.: Projection uncertainties in global terrestrial C cycling 437

Table 1. General properties of biome models. ∗PFT indicates plant functional type.

GVM Resolution Vegetation Number of PFTs∗ Fire Nitrogen Soil temp function Permafrost

HYBRID4 720× 360 DGVM 6 No Yes Exponential with optimum No

JeDi 192× 145 DGVM 15 No no Exponential No

JULES 192× 145 DGVM 5 No no Exponential Yes

LPJmL 720× 360 DGVM 10 Yes no Lloyd & Taylor Yes

SDGVM 720× 360 Fixed PFT 7 Yes Yes Optimum curve No

VISIT 720× 360 Fixed PFT 16 Yes no Lloyd & Taylor No
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Figure 1. Global annual NPP, VegC stock, SOC stock, and VegC residence time changes. The boxplot summarizes the values at the end of

the simulation period. Open circles represent outliers if the largest (or smallest) value is greater (or less) than 1.5 times the box length from

the 75 % percentile (or 25 % percentile).

2 Data and methods

2.1 Model and simulation protocol

We examined the global annual changes in net primary pro-

duction (NPP), vegetation biomass carbon stocks (VegC),

and soil organic carbon (SOC) using six GVMs obtained

from the ISI-MIP (Warszawski et al., 2014). In addition,

we calculated the annual VegC residence time from annual

mean VegC divided by annual NPP, which is an index of the

turnover rates of plant parts including the mortality rates of

individuals, processes modeled using baseline rates, climate

sensitivities (including fire), and competitively induced mor-

tality, and are affected indirectly through shifts in vegetation

composition (Friend et al., 2014).

The GVMs used were HYBRID4 (Friend and White,

2000), JeDi (Pavlick et al., 2013), JULES (Clark et al., 2011),

LPJmL (Sitch et al., 2003), SDGVM (Woodward et al.,

1995), and VISIT (Ito and Inatomi, 2012), which conducts

model simulations under multiple GCMs and RCPs in the

ISI-MIP. HYBRID4, JeDi, LPJmL, and JULES are DGVMs,

and a fixed land cover map was used for the other models in

this study. The general properties of the participating ecosys-

tem models are summarized in Table 1. More detailed in-

formation on each model can be found in Warszawski et al.

(2013) and Friend et al. (2014).

These models were simulated partly in five GCMs

with four RCP scenarios. HadGEM2-ES (HadGEM), IPSL-

CM5A-LR (IPSL), MIROC-ESM-CHEM (MIROC), GFDL-

ESM2M (GFDL), and NorESM1-M (NorESM) are the

GCMs from a CMIP5 experiment (Taylor et al., 2012) with

bias correction for temperature and precipitation performed

by Hempel et al. (2013). In this study, to focus on climate

www.earth-syst-dynam.net/6/435/2015/ Earth Syst. Dynam., 6, 435–445, 2015
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change impacts on terrestrial ecosystem C cycling, anthro-

pogenic land-use changes were not considered in the simu-

lation. Every GVM was used for a separate spin-up for each

GCM, with the aim of bringing the carbon and water pools

into equilibrium using detrended and bias-corrected daily

climate inputs for 3 consecutive decades spanning 1951–

1980. The number of simulations for each GVM–GCM–RCP

combination is summarized in the Supplement (Table S2).

The global climate variables (atmospheric CO2 concentra-

tion, global mean temperature anomaly 1T (◦C), and global

precipitation anomaly 1P (%)) in each RCP scenario for

all GCMs are summarized in the Supplement (Fig. S1). All

the simulation results and bias-corrected climate data are

available at the Earth System Grid Federation (ESGF) por-

tal (http://esg.pik-potsdam.de/).

2.2 Statistical analysis

We used three-way analysis of variance (ANOVA) for global

1NPP, 1VegC, 1SOC, and 1VegC in each year as factors

for RCP, GCM, and GVM and determined their interactions

in order to decompose total variance in all ensembles into

each factor (Yip et al., 2011). For this analysis, we used only

the simulations for the RCP2.6 and 8.5 scenarios due to the

fact that incomplete samples were simulated.

To avoid internal variability of GCMs, we used decadal-

averaged values for 1NPP, 1VegC, 1SOC, and 1VegC.

Subsequently, we calculated the Type II sums of squares in

ANOVA using R (R Core Team, 2012). In this study, the

overall uncertainty, denoted as variance (SSoverall), can be ex-

pressed as follows:

SSoveralli t = SSRCPi t + SSGCMi t
+ SSGVMi t

+ SSRCP×GCMi t
+ SSRCP×GVMi t

+ SSGCM×GVMi t

+ SSRCP×GCM×GVMi t
,

in which i indicates each variable (i.e., 1NPP, 1VegC,

1SOC, and 1VegC) and t indicates decadal time steps from

the 2000s to the 2090s. SSoveralli t is the total sum of squares,

and the other SS terms indicate the sums of squares for each

main effect and each interaction effect.

For grid-based assessment, we conducted additional

ANOVA for 1NPP, 1VegC, and 1SOC in each grid for

two projection periods (2055 and 2099). For simplicity, we

did not consider the interaction terms (i.e., SSRCP×GCM,

SSRCP×GVM, SSGCM×GVM, SSRCP×GCM×GVM) in the

grid-based assessment. We used only the main effects to cal-

culate the relative importance of each uncertainty source as

follows:

SSmaini t = SSRCPi t + SSGCMi t
+ SSGVMi t

.

The relative fractions of uncertainty are expressed as Sit for

each main effect divided by SSmaini t .

In addition, using the grid-based maps, we compiled the

dominant uncertainty in each grid source on the basis of the

observation-based present-day Köppen–Geiger climatic divi-

sions (Kottek et al., 2006). The five major climate types are

equatorial (A), arid (B), warm-temperature (C), snowy (D),

and polar (E). In this analysis, we selected the dominant un-

certainty source in each grid and expressed them as fractions

of the total grid numbers in each climatic division.

3 Results

3.1 Global NPP, VegC, SOC, and VegC residence time

changes during 1970–2099

At the end of the simulation period,1NPP ranged from−7.0

to 54.3 Pg C year−1, 1VegC ranged from −27 to 543 Pg C,

and 1SOC ranged from −195 to 471 Pg C in the entire sim-

ulation set. The variance of 1NPP increased with time and

was highest in RCP8.5. This was true for the other variables

(1VegC and 1SOC). NPP increased in RCP8.5, except in

the HYBRID4 model. NPP in HYBRID4 forced with two

GCMs (HadGEM and MIROC) showed negative values by

2099. Global VegC stocks increased in almost all RCPs and

GVMs compared with global VegC in 2000. However, the

global Veg stocks in LPJmL peaked at ca. 2050 and then de-

clined toward 2100. In the projection period (2000–2099),

the SOC stock in the five models (except for HYBRID4) in-

creased in all RCPs compared with that in 2000.

1VegC residence time at the global scale showed in-

creased divergence in scenarios with higher radiative forc-

ing. In spite of radiative forcing, 1VegC declines residence

time increased in HYBRID4 and decreased in LPJmL. In

RCP2.6, the median value of1VegC residence time was pos-

itive. Conversely, in RCP8.5, the median 1VegC residence

time was almost 0 within a considerable range from −2.8

to 9.0 years. In SDGVM, 1VegC residence time remained

fairly constant in all RCPs under all GCMs.

3.2 Contribution of each uncertainty source to Global

NPP, VegC, and SOC

Figure 2 shows the fraction of uncertainty for each variable.

For NPP, the GCM uncertainty dominated before the year

2020, and the RCP uncertainty increased and dominated after

2040. The GVM uncertainties were approximately 20 % for

most of the simulation period. For VegC, the RCP uncertainty

also increased gradually after 2020 and became approxi-

mately 40 % of the total variance by 2100. The GVM uncer-

tainty was most prominent for most of the projection period;

however, it decreased after 2040 by 40 % of the total vari-

ance. For SOC, the GVM uncertainty dominated throughout

the projection period, with an average value of 92 % of the to-

tal variance. For 1VegC residence time, GVM contribution

gradually increased after the 2010s and reached 74 % in the

2090s. Conversely, the contribution of GCM to 1VegC res-

idence time decreased from 80 % in the 2000s to 2 % in the

2090s. Although RCP formed a considerable part of VegC

Earth Syst. Dynam., 6, 435–445, 2015 www.earth-syst-dynam.net/6/435/2015/
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Figure 2. Fraction of variance derived from the emission scenar-

ios (RCPs), GCMs, and GVMs for annual NPP, VegC, SOC, and

VegC residence time changes. The variances were estimated by

three-way ANOVA. The fractions in interactions include the sum

of variations of interaction terms (RCP×GCM, RCP×GVM, and

GCM×GVM).

and NPP uncertainties in the latter half of the 21st century,

an RCP contribution to the global 1VegC residence time of

5 % was observed in the 2090s.

3.3 Spatial heterogeneity of the contribution of each

uncertainty source

The strength of each uncertainty source relative to total vari-

ance showed geographical heterogeneity for each variable

(Fig. 3). For 1NPP, GCM had a considerable contribution to

total variance in many parts of the world in the 2050s. In the

2090s, variance mainly explained by GCM was observed in

limited regions, e.g., the Sahara and central Australia. RCP-

dominant uncertainty source regions were present in part of

the tropics (Southeast Asia) to cool temperate regions (North

America) in the 2090s for 1NPP. For 1VegC, GCM had a

large contribution to each grid total variance in most regions

at both times. For 1SOC, GVM was the major uncertainty

source for each grid total variance in most regions in both pe-

riods. GCM was observed to be the largest uncertainty source

in some regions such as the southwestern USA and the Sa-

hara region for 1SOC. For 1VegC residence time, GCM

dominated more and its contribution was scattered across dif-

ferent parts of the globe at both periods (Fig. 3). In northern

Arctic regions, GVM was dominant over a wide area from

high- to low-latitude regions.

In terms of climatic divisions, the dominant uncertainty

source clearly showed different patterns in 1NPP and

1VegC from equatorial climate (A) to snowy climate (D)

(Fig. 4). The contribution of GVM to 1NPP variance de-

creased as the climate became cooler in NPP (Fig. 4a). In

each major climatic division, the seasonally drier divisions

(m, s, w) tended to show a higher contribution of GCM com-

pared with the division with fully humid seasons (f). Sim-

ilarly, in arid climates (BW and BS), the contribution of

GCM to the uncertainties of all variables was relatively high

(Fig. 4a–c). Unlike global 1NPP and global 1VegC, GVM

was dominant in tropical climates (Af–Aw), whereas RCP

was not dominant in these regions, even in 2100. In Cf, Ds,

Dw, and ET, RCP was the largest or second-largest source

of uncertainty (from 30 to 50 % area) in each climatic divi-

sion. For 1SOC, GVM was dominant in a broad area of all

climate divisions, as shown in the results for global 1SOC.

Furthermore, there were negligible areas where RCP domi-

nated the uncertainty in1SOC for all climatic divisions. The

contributions of each uncertainty source showed similar pat-

terns to the climatic gradients between 1VegC and 1VegC

residence time. The contributions of GVM in 1VegC resi-

dence time in tropical to arid regions (Af to BW) were larger

than those in 1VegC, which ranged from 21 to 42 %.

4 Discussion

For the historical period (1970–2000), the models simulated

similar historical NPP, VegC, and SOC trends for different

GCMs (Fig. 1). However, at the end of the projection pe-

riod, there were marked differences for all variables (Fig. 1).

In particular, NPP and SOC varied from a net sink to a net

source in the highest baseline emission scenario (RCP8.5). In

higher emission scenarios, the total uncertainties for all vari-

ables increased to a greater extent. The total uncertainties for

each variable in this study were comparable with or greater

than those for projected C cycling in a previous model in-

tercomparison study (Sitch et al., 2008; Todd-Brown et al.,

2013) even with a smaller number of GVMs.

Compared with previous model intercomparison studies of

terrestrial C cycling, the ISI-MIP study has an important sim-

ulation protocol advantage, i.e., it is a partial factorial exper-

www.earth-syst-dynam.net/6/435/2015/ Earth Syst. Dynam., 6, 435–445, 2015
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Figure 3. Geographic distribution of the relative importance of the uncertainty derived from the emission scenarios (RCPs), GCMs, and

GVMs for annual NPP, VegC, SOC, and VegC residence time changes from 2000 to 2050 and 2099 in each grid cell. The variances were

estimated by one-way ANOVA.

iment with three independent treatments for CO2 emission

scenarios (RCP), GCM, and GVM. Therefore, uncertainty

can be decomposed into the sum of interclass variance (σ 2
RCP,

σ 2
GCM, σ 2

GVM, and their interactions) and within-class vari-

ance (σ 2
resid). The ANOVA results revealed that each source

made quite a different contribution to the total uncertainty,

which varied with projection period (Fig. 2). Whereas GCMs

were the dominant sources of uncertainty for NPP early in

the projection period (2000–2040), RCP dominated later in

the projection period (2050–2100) (Fig. 2). This trend of in-

creasing RCP importance is similar to that of VegC (Fig. 2).

This may be attributed to the enlargement of CO2 concentra-

tion differences among RCPs for this period. The interaction

terms as a source of uncertainty were significant (p < 0.05

level, not described) and contributed considerably to total

uncertainties (up to 20 %) in NPP. This result indicates that

there were different sensitivities to the CO2 fertilization ef-

fect on vegetation processes among the GVMs (Friend et al.,

2014) that also contributed to projection uncertainties.

Uniqueness in the HYBRID4 model projection was ob-

served in the 1VegC residence time (Fig. 1). This is par-

tially due to HYBRID4 having strong stomatal responses to

elevated vapor pressure deficits, and thus simulated negative

1NPP between 2080 and 2100 even in higher CO2 condi-

tions (Friend et al., 2014). In addition, GVM had a con-

tribution of less than 20 % to global 1NPP (Fig. 2); how-

ever, there were large fractional uncertainties in the 1VegC

residence time (over 60 % at the end of the 21st century).

The 1VegC residence time represents the turnover rates of

plant parts and the mortality rates of individuals, processes

modeled using baseline rates, climate sensitivities (including

fire), and competitively induced mortality. So 1VegC resi-

dence time is affected indirectly through shifts in vegetation

composition (Friend et al., 2014). The interaction terms in

VegC residence time changes dominated at about 20 % dur-

Earth Syst. Dynam., 6, 435–445, 2015 www.earth-syst-dynam.net/6/435/2015/
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Figure 4. The fraction of dominant uncertainty source in each Köppen climatic divisions in 1NPP (a), 1VegC (b), 1SOC (c), 1VegC

residence time (d) in the 2090s, and Köppen climate classification map for the period 1951 to 2000 from the Climatic Research Unit (CRU)

(e). In panels (a–c), the colors indicate each uncertainty source as in Fig. 2 (i.e., orange indicates RCP, yellow indicates GCM, and blue

indicates GVM).

ing the entire simulation period, indicating that GVM has a

different response to individual GCMs and RCPs. For ex-

ample, the HYBRID4 model notably showed high sensitiv-

ity to GVMs (Fig. 1). This term constitutes a non-negligible

fraction compared with the main effects of each uncertainty

source. Friend et al. (2014) pointed out that the humidity term

in the vapor pressure deficit is a critical factor to differenti-

ate the projected NPP among GVMs in the ISI-MIP. This

is because the adoption of a response function to the vapor

pressure deficit is critical for responses to warmer climate

conditions (Kumagai et al., 2004; Friend et al., 2014). Fur-

thermore, in this study, only HYBRID4 incorporated a fully

coupled N cycle; therefore, besides CO2 fertilization effects,

implementation of the N cycle in more models is required

for more plausible modeling of effects of CO2 fertilization in

terrestrial C projections (Thornton et al., 2009).

Humidity data for GCMs were not adjusted to the bias-

corrected air temperature and precipitation in the ISI-MIP
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study (Masaki et al., 2015). This might be another potential

source of uncertainty and bias for ecosystem projections and

for evapotranspiration in global hydrological water models

(Masaki et al., 2015). Our results suggested that an essential

factor to reduce uncertainties in the climate assessment of

ecosystems is improved understanding of C dynamics after

photosynthesis rather than reduction of uncertainties in the

exchange of C between the atmosphere and vegetation. In

fact, the representations of these processes are quite different

among GVMs (Friend et al., 2014).

The uncertainties in SOC changes driven by GVM were

significantly large and were dominant over the entire simula-

tion period (Fig. 2), possibly suggesting that SOC processes

are not well constrained by the observational data or con-

sistent between models, suggesting that the uncertainties de-

rived from the GVMs overwhelmed those derived from the

climate scenarios. In addition, a previous study showed that

VegC dynamics did not correlate strongly with that for SOC

(Nishina et al., 2014), i.e., SOC processes contributed con-

siderably to GVM-driven clustering in the SOC dendrogram.

Another ISI-MIP study demonstrated that the sensitivity of

global SOC decomposition to increasing global mean tem-

perature varied significantly among GVMs (Nishina et al.,

2014). Moreover, differences in the initial SOC stock result-

ing from different spin-up procedures among GVMs criti-

cally contributed to the incoherence in SOC dynamics. In a

CMIP5 study, Nishina et al. (2014) demonstrated that mi-

crobial decomposition processes are a dominant factor de-

termining the amount of global SOC stock rather than C

input from photosynthetic products. Determination of the

initial SOC stock is important for future soil carbon stock

and land surface fluxes (Exbrayat et al., 2014). In our re-

sults, there was no regional and ecosystem-type (climatic di-

visions) dependency on GVM contributions to uncertainty

in SOC changes. Therefore, to reduce GVM uncertainties in

SOC projection, improvement of spin-up procedures and mi-

crobial decomposition will be effective for reduction of SOC

uncertainties at both local and global scale.

Considering the geographic distribution, we determined

that the contributions of each uncertainty source to each grid

variance were spatially heterogenous (Fig. 4), although the

total contributions of each uncertainty source in the grid-

based assessment (Fig. 3) were roughly in agreement with

Fig. 2 for each period (2050 and 2099). These heterogeneities

could be linked with climatic divisions (Fig. 4). For exam-

ple, in 1SOC, GVMs are also a main contributor in most

regions in both periods (2050 and 2099). However, the grid-

based assessment revealed geographically distinct regions

for each uncertainty source. Although GCM was not a large

contributor to global SOC dynamics (Figs. 3 and 4), GCM

had a significant effect on uncertainty in arid (BW) to semi-

arid (BS) regions (e.g., sub-Saharan Africa, the southwestern

USA, South America (pampa), Central Asia, and Australia)

for all variables. In a CMIP5 study, Sillmann et al. (2013) re-

ported that changes in precipitation patterns in their regions

showed the low degree of coincidence among GCMs. These

results suggest that the projection of precipitation patterns

among GCMs is critically important to evaluate the impact

of climate change on ecosystem conditions and C stocks in

these regions (as shown in the Supplement). Although the

carbon stocks and changes in these regions are not large,

it is important to predict local climate condition uncertain-

ties in order to obtain local climate predictions of ecosys-

tem changes during climate change. In NPP and VegC in the

2090s, GVM is the dominant source in semitropical to tropi-

cal climate zones (especially in Southeast Asia, Latin Amer-

ica, and central Africa), whereas GVM is not dominant for

global 1NPP during this period. This implies that modifica-

tion of tropical rainforest C cycling is critical for reducing

uncertainties in global NPP. In broad terms, the contribution

of GVM as an uncertainty source in 1NPP becomes smaller

in cooler climatic regions (C–D); however, those of GVM

to 1VegC were larger in cooler climatic regions (Fig. 4).

This inconsistency can be explained by the large differences

between GVMs in the vegetation turnover rate in northern

ecosystems because of the different representations of veg-

etation dynamic processes (e.g., forest fires, N cycling, and

senescence) (Friend et al., 2014). These results highlight that

model improvement on the basis of plant functional type

(corresponding to climate divisions) could be important for

the effective reduction of uncertainty in climate impact as-

sessments.

Our results do not mean that GCMs are not important

for the uncertainties in VegC and SOC projection from the

viewpoint of global C stocks. For example, under RCP8.5,

the HYBRID4 model simulation showed that VegC diverged

considerably among GCMs by 2100 (from 162 to 547 Pg C).

Moreover, in Ahlström et al. (2012), one DGVM forced with

10 different GCMs showed a difference of approximately

500 Pg C among projections of changes in global terrestrial

C stock (VegC and SOC) by 2100. Furthermore, the num-

bers of GCMs and impact models used in this study likely

affected the results. Hence, our results indicate a smaller

contribution by GCM to total uncertainties than a lack of

inter-GVM constraints owing to insufficient validation for

the SOC and VegC processes from global observations. In

the case of RCP2.6, the model projections were comparable

for 1NPP; however, the results for 1VegC and 1SOC dif-

fered significantly. This implies that internal ecosystem pro-

cesses such as photosynthate partitioning and mortality were

poorly constrained in the GVMs. Moreover, process uncer-

tainties considerably affect SOC dynamics as a C source via

litter inputs. More observation-based model intercomparison

(e.g., MsTMIP, (Huntzinger et al., 2012)) for each compo-

nent is required for GVMs to reduce the overall uncertainty.

For SOC dynamics, empirical estimations using observation-

based heterotrophic respiration (Bond-Lamberty and Thom-

son, 2010; Hashimoto, 2012) are available for validation of

SOC decomposition processes. In addition to each model

modification, in future, multiple land-use scenarios should

Earth Syst. Dynam., 6, 435–445, 2015 www.earth-syst-dynam.net/6/435/2015/



K. Nishina et al.: Projection uncertainties in global terrestrial C cycling 443

be considered in projections to understand additional poten-

tial uncertainties (σ 2
landuse) in the global terrestrial C budget.

Furthermore, the use of bias-corrected GCM forcing data

will probably affect C dynamics as well as the projections

in hydrological models (Haddeland et al., 2011; Ehret et al.,

2012); however, there is still a lack of validation for the effect

of various bias-correction methods on C cycling projections

and their relative uncertainty.

5 Conclusions

In conclusion, by combining multiple GVMs, GCMs, and

RCP scenarios, we determined the different contributions

of each factor to total uncertainty, which is highly depen-

dent on the variables (NPP, VegC, SOC, and VegC residence

time), projection periods, and regions. The contribution of

each source of uncertainty in these variables showed differ-

ent patterns compared with the hydrological variables sim-

ulated by global hydrological models from another ISI-MIP

study (Wada et al., 2013). At the global scale, by the middle

of the 21st century, GCM is the dominant uncertainty source

in most regions for NPP, VegC, and VegC residence time.

However, GVM largely remains the major uncertainty in the

impact models in most regions, particularly at the end of the

21st century.

Although RCP can differentiate NPP in temperate and cool

climate regions, the uncertainties of VegC and VegC resi-

dence time are dominated by GVM. These results suggest

that the fate of photosynthetic carbon over the long term is

an important uncertainty process for GVM models in climate

impact assessments. Thus, our findings indicate that model

improvement on the basis of plant functional type (corre-

sponding to the climate divisions) could be important for the

effective reduction of uncertainty in climate impact assess-

ments.

For global SOC projections, the uncertainty driven by

GVM was greater than that of the climate scenarios, i.e.,

RCPs and GCMs. This SOC uncertainty might be at-

tributable mainly to the variety of SOC processes among

GVMs and a lack of constraints for spin-up procedures. The

uncertainties associated with SOC projections are signifi-

cantly high, and the global SOC stocks by 2099 shift from

net CO2 sources to net sinks (from −195 to 471 Pg C). Be-

cause of the magnitude of the uncertainty range in projected

global SOC stock, the reduction of SOC uncertainties in

GVM could be important for the terrestrial C budget.

Particularly in arid to dry climate regions, GCM was the

dominant uncertainty source for all compartments and fluxes

of ecosystem models even at the end of the 21st century be-

cause NPP in these regions is strongly subjected to water-use

limitation. The CO2 emission scenario (RCP) as an uncer-

tainty source is important for the late projection period for

both NPP and VegC. Moreover, the CO2 fertilization sensi-

tivity of vegetation processes is quantitatively important for

future C projection uncertainties.

The Supplement related to this article is available online

at doi:10.5194/esd-6-435-2015-supplement.
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