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INTRODUCTION

The nature of oceanic basement in the northwestern
Pacific is still poorly known and remains a gap in our
knowledge of the geological history of the Pacific
Ocean. An important feature of this region is the pres�
ervation of a small fragment of the Kula plate, which
was previously believed to have been entirely subducted.
Pitman and Hayes [1] investigated the distribution of
magnetic anomalies south of the Aleutian Trench and
concluded that a relic of an ancient lithospheric plate,
which migrated to the north faster than the Pacific
plate, has preserved in this part of the northwestern
Pacific. Grow and Atwater [2] assumed that this hypo�
thetical plate had been entirely subducted and suggested
the name Kula (from the Hawaiian, meaning “com�
pletely gone”). In the geodynamic context of the geo�
logic history of the northwestern Pacific, it is similar to
the Izanagi and Aluk (part of the Phoenix plate in the
southeast) plates, which will completely disappear,
according to [3], in the Aleutian subduction zone of
eastern Asia and beneath the western margin of South
America, respectively. Rea and Dixon [4] argued that
the Kula plate was formed owing to the breakup of the
Farallon plate during the formation of a Late Creta�
ceous rift zone. The newly formed crust of the Kula–

Farallon plate was subsequently almost entirely sub�
ducted beneath North America, and the kinematics of
the Kula–Pacific plate controlled the character of mag�
netic anomalies suitable for the dating of the basement
of the northwestern Pacific [3]. According to paleomag�
netic data, Kula–Pacific spreading ceased at approxi�
mately 43 Ma [3].

The last (not yet subducted) 75�km�long segment of
the Kula Ridge adjoins the axis of the Aleutian Trench
in the west�southwest at 171.5° E. A relic of the afore�
mentioned paleo�spreading center of the Kula plate is
bounded in the south by the Stalemate Fracture Zone,
which is the northwestern end of the Kula–Pacific pale�
otransform fault and comprises an eponymous trans�
verse ridge (Fig. 1). It is supposed that this ridge extend�
ing southeast–northwest for approximately 500 km was
formed owing to the tectonic uplift of a block of oceanic
lithosphere of Cretaceous (?) age along a transform
fault [3]. However, there is still no data on the rocks of
the Stalemate Ridge.

Cruise SO201 Leg 1b of the German R/V Sonne was
conducted within the Russian–German KALMAR
project in 2009 in the northwestern Pacific. It was
focused, in particular, on the investigation of the Stale�
mate Fracture Zone. The results of multibeam bathim�
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etry conducted during this cruise supported previous
conclusions [3] and allowed unequivocal identification
of this structure as a transverse ridge. Morphologically,
the Stalemate Ridge is similar to transverse ridges
extending parallel to adjacent transform faults in mod�
ern ocean basins and resulting from the tectonic uplift
of the oceanic lithosphere along transform faults [5, 6].
Rocks dredged during the cruise at five stations along
the Stalemate Ridge characterize the complete section
of the oceanic lithosphere of the classic (Penrose) type,
which was probably formed in the Kula–Pacific spread�
ing center [7].

Variably altered mantle peridotites were dredged
from the eastern slope of the northwestern segment of
the Stalemate Ridge, where the ocean depth is 4600–
3000 m. Dredging was carried out at depths of 4360–
3955 m (Fig. 1). Among numerous rock fragments
recovered at station SO201�1b�DR37, 13 representative
samples of serpentinized lherzolites (nine samples) and
strongly altered serpentinized silicified dunites (four

samples) were collected. The bulk compositions of
these samples and the character of their secondary
alteration were reported elsewhere [8].

The goal of this study was to reconstruct the mantle
stage of the compositional evolution of peridotites from
the Stalemate Ridge. The microprobe analysis of relict
primary minerals was the main tool.

METHODS

Relicts of primary minerals were analyzed in dou�
ble�polished thin sections and epoxy mounts (25 mm
diameter) with monomineralic fractions 0.25–1.0 mm
in grain size polished on one side. Major minerals were
analyzed at the Helmholtz Center for Ocean Research
(GEOMAR, Kiel, Germany) using a JEOL JXA 8200
electron microprobe equipped with five wavelength
spectrometers, including high�sensitivity H�type spec�
trometers for the precise measurement of trace ele�
ments. Minerals were analyzed at an accelerating volt�
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age of 15 kV and a beam current of 20 nA for pyroxenes
and 50 nA for spinel. For local mineral analysis, the
beam was focused to a spot of 1 µm. Clino� and ortho�
pyroxenes containing low�temperature exsolution
lamellae (Fig. 2) were analyzed with a 50 µm defocused
beam for the estimation of their bulk compositions.
Natural standards from the collection of Smithsonian
Institute [9] were used for calibration. In order to check
the quality of analysis, standard samples of pyroxene
(USNM 12214 Kakanue Augite), chromite (USNM
117075), and ilmenite (USNM 96189) [9] were mea�
sured at the beginning and end of each analytical ses�
sion and after every 50 analyses. Back�scattered elec�
tron images were obtained in the COMPO Image mode
at a beam current of 20 nA.

PETROGRAPHIC AND MINERALOGICAL 
CHARACTERISTICS OF ROCKS

Petrography

Macroscopically, the peridotites are yellowish green
(serpentinized lherzolites) or light red (serpentinized
dunites) fine�grained polymineralic rocks (Figs. 2a,
2d). All the rocks are almost completely serpentinized

(lherzolites) and silicified (dunites and some lherzo�
lites) and show a heterogeneous structure and a reticu�
late texture. The degree of lherzolite serpentinization is
very high and may reach 80–100%. One of the serpen�
tinized lherzolite samples (DR37�14) shows character�
istic features of stress�induced solid�state plastic defor�
mations. Serpentine is represented by reticulate chryso�
tile. The altered dunites show clear indications of
specific low�temperature processes resulting in their
silicification and replacement of all silicate phases by
quartz and amorphous silica [8]. Relicts of primary cli�
nopyroxene, orthopyroxene, and chrome spinel were
observed in the rocks.

Clinopyroxene 

Clinopyroxene grains in the serpentinized lherzo�
lites are up to 0.1 mm in size (occasionally up to
0.4 mm) and account for 15% of the rocks (Fig. 2b).
They are unevenly distributed in the samples and most
abundant around large orthopyroxene grains. Some cli�
nopyroxene grains are replaced by homoaxial calcic
amphibole pseudomorphs. The pseudomorphic char�
acter of replacement is gradually obliterated by super�
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Fig. 2. Photomicrographs of serpentinized lherzolites from the Stalemate Fracture Zone. (a) Fragment of sample DR�37�9. The
rock is 80% serpentinized, and former olivine core are completely replaced by serpentine. Parallel nicols, D = 1.7 mm. (b) Back�
scattered electron image of a fragment of typical clinopyroxene from serpentinized lherzolite. Parallel orthopyroxene lamellae are
seen over the whole grain area. Sample DR37�15. (c) Typical orthopyroxene from serpentinized lherzolite sample DR37�14.
(d) Fragment of typical serpentinized and silicified dunite sample DR37�2. Serpentine is almost completely replaced by quartz.
The degree of rock silicification is 70%. Parallel nicols, D = 1.7 mm. The diameter of electron beam (50 µm) is shown in Figs. 2b
and 2c.
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imposed deformations. This results in the formation of
thin plates of calcic amphibole. Thin clinopyroxene
lamellae up to 1 µm thick exsolved from solid solution
also occur in orthopyroxene. Clinopyroxene is very rare
in the serpentinized dunites and was never observed in
thin sections. The pyroxenes that were analyzed are
separate homogeneous fragments of crystals without
any evidence for solid solution decomposition from the
0.25–1.0 mm fraction of the crushed rock.

Clinopyroxene from the lherzolites shows a moder�
ately magnesian (Mg# = 100Mg/(Mg + Fe) = 91.7–
92.4) and chromian (Cr# = Cr/(Cr + Al) = 0.12–0.16)
composition corresponding to the range of clinopyrox�
ene compositions from moderately depleted MOR
peridotites (Na2O = 0.19–0.41 wt %, TiO2 = 0.06–
0.15 wt %, Al2O3 = 3.59–5.48 wt %, Cr2O3 = 0.82–
1.18 wt %, and NiO = 0.06–0.09 wt %) (Table 1, Fig. 3)

[10, 11]. Clinopyroxene from silicified dunite sample
DR37�3 is sharply different in composition from lher�
zolitic clinopyroxene in higher Mg# (93.7); higher
contents of Na2O (0.85 wt %), TiO2 (0.23 wt %), and
Cr2O3 (1.32 wt %); and lower Al2O3 (4.65 wt %) and
NiO (0.06 wt %) (Fig. 3, Table 1). Clinopyroxene
from lherzolite sample DR37�6 (Fig. 3) shows an
intermediate composition between clinopyroxenes
from the lherzolites and dunites (Mg# = 92.4,
Na2O = 0.21 wt %, TiO2 = 0.14 wt %, Cr2O3 =
0.82 wt %, and NiO = 0.08 wt %). Figure 4 shows the
mean compositions of basalts from the East Pacific Rise
[12, 13] and mean compositions of diabases from ODP
Hole 504B [14]. Perhaps, the systematic enrichment of
clinopyroxenes from the dunite and lherzolite (mainly,
DR�37�6) in Na and Ti is related to the interaction of
peridotitic (lherzolitic) material with basaltic melt. Cli�
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Table 1. Mean compositions of clinopyroxene from the serpentinized dunite (sample DR37�3) and lherzolites (samples
DR37�5, DR37�6, DR37�7, DR37�9, DR37�10, DR37�11, DR37�12, DR37�13, DR37�14, and DR37�15) of the Stale�
mate Ridge; n is the number of analyses; σ is standard deviation; Cr# = Cr/(Cr + Al); and Mg# = Mg/(Mg + Fe)

Component DR37�3 DR37�6 DR37�9 DR37�10 DR37�11 DR37�12 DR37�13 DR37�14 DR37�15

Number of analyses

4 6 4 2 3 11 13 3 3

SiO2 51.61 53.62 51.41 51.41 51.65 51.33 51.30 51.69 52.02

TiO2 0.21 0.14 0.07 0.07 0.07 0.06 0.05 0.10 0.06

Al2O3 4.90 3.59 5.39 5.52 5.13 5.41 5.57 5.07 4.82

Cr2O3 1.32 0.82 1.16 1.18 1.15 1.15 1.20 1.25 1.06

FeO 1.84 2.49 2.87 2.95 2.94 2.88 2.96 3.03 3.01

MnO 0.02 0.08 0.08 0.08 0.07 0.08 0.08 0.07 0.07

MgO 14.99 16.90 17.36 17.57 17.08 17.03 17.12 17.95 17.49

CaO 23.33 23.31 21.00 20.54 21.16 21.43 21.16 20.10 20.94

Na2O 0.89 0.35 0.19 0.21 0.28 0.17 0.17 0.26 0.27

NiO 0.06 0.08 0.10 0.10 0.07 0.10 0.11 0.11 0.11

Total 99.17 101.38 99.64 99.61 99.61 99.66 99.72 99.64 99.85

Mg# 0.94 0.92 0.92 0.91 0.91 0.91 0.91 0.91 0.91

Cr# 0.15 0.13 0.13 0.13 0.13 0.12 0.13 0.14 0.13

Standard deviation (σ)

SiO2 0.06 0.64 0.29 0.06 0.26 0.27 0.20 0.18 0.27

TiO2 0.01 0.04 0.01 0.00 0.00 0.00 0.00 0.02 0.01

Al2O3 0.04 0.67 0.29 0.25 0.25 0.34 0.21 0.32 0.12

Cr2O3 0.03 0.19 0.04 0.01 0.03 0.07 0.07 0.04 0.04

FeO 0.04 0.24 0.28 0.23 0.18 0.16 0.27 0.19 0.13

MnO 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01

MgO 0.07 0.33 1.12 0.99 0.65 0.50 0.90 0.53 0.39

CaO 0.04 0.67 1.38 1.38 0.60 0.71 1.29 0.83 0.66

Na2O 0.01 0.03 0.02 0.02 0.08 0.01 0.01 0.07 0.07

NiO 0.03 0.04 0.03 0.05 0.02 0.02 0.03 0.03 0.01

Total 0.11 0.34 0.18 0.19 0.13 0.15 0.20 0.09 0.13

Mg# 0.00 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cr# 0.16 0.01 0.59 0.40 0.43 0.44 0.39 0.64 0.11
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nopyroxene lamellae in orthopyroxene are narrow
micrometer�sized stringers (Figs. 2b, 2c), which could
not be analyzed.

Orthopyroxene 

The serpentinized lherzolites contain from 10 to
20% orthopyroxene. Orthopyroxene grains are pseudo�
morphed by bastite serpentine. Unaltered relicts occur
as small anhedral grains usually no more than 0.1 mm in
size, occasionally up to 0.4 mm. The margins of large
orthopyroxene phenocrysts are fractured, and numer�
ous small grains of orthopyroxene occur in the enclos�
ing rock matrix. Orthopyroxene contains platy
ingrowths of clinopyroxene formed by the decomposi�
tion of solid solution (Fig. 2c). Orthopyroxene lamellae
occur in turn in large clinopyroxene grains. Orthopy�
roxene was not detected in the altered dunites.

The compositions of orthopyroxene fall within a
narrow interval (Fig. 5, Table 2; Mg# = 90.3–90.9,
TiO2 = 0.02–0.05 wt %, Na2O = 0.01–0.025 wt %,
Al2O3 = 3.86–4.85 wt %, Cr2O3 = 0.61–0.81 wt %, and
NiO = 0.12–0.17 wt %). With respect to Cr and Al con�
tents, orthopyroxene from the lherzolites of the Stale�
mate Ridge corresponds to orthopyroxene from the
moderately depleted peridotites of the Mid�Atlantic

Ridge (Fig. 6) and is different from orthopyroxene from
the peridotites of the East Pacific Rise in higher Al con�
tent (Al2O3 = 2.1–2.9 wt %) [12].

Chrome Spinel 

Spinel of two morphological types occurs in the
lherzolites. One type includes large irregular grains from
0.4 to 0.6 mm in size, and the other is small crystals
0.05–0.1 mm in size forming aggregates around cli�
nopyroxene grains (Fig. 2a). The altered dunites con�
tain irregular spinel grains from 0.1 to 0.25 mm in size
embedded in a silicified matrix (Fig. 2d).

Spinel from the peridotites of the Stalemate Frac�
ture Zone shows considerable compositional variations
(Figs. 7, 8; Table 3). The lherzolites contain moderately
chromian (Cr# = 0.27–0.33) and moderately magne�
sian (Mg# = 0.65–0.69) spinel with low Ti (TiO2 =
0.04–0.09 wt %) and Fe3+ (Fe3+# = 0.021–0.029).
Spinel from the altered dunites is more chromian
(Cr# = 0.39–0.43), titanian (TiO2 = 0.19–0.28 wt %),
and oxidized (Fe3+# = 0.027–0.043). The composition
of spinel from sample DR37�6 is intermediate between
the lherzolitic and dunitic spinels (Cr# = 0.33, Fe3+# =
0.022, and TiO2 = 0.09 wt %). The compositions of
spinel and clinopyroxene are strongly correlated in the
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rocks (Fig. 8). An increase in Cr# and TiO2 content
from the lherzolites to the dunites is accompanied by an
increase in TiO2 and Na2O in clinopyroxene (Fig. 8).

DISCUSSION

Genesis of Lherzolites

The composition of minerals from the altered lherz�
olites is consistent with the compositional fields of
phases from the residual peridotites of MOR [17],
which suggests that the lherzolites can be interpreted as
products of partial melting of the upper mantle beneath
the Kula–Pacific Ridge. In order to estimate the condi�
tions of mantle melting, geochemical modeling was
performed on the basis of spinel (Cr# and Ti) and cli�
nopyroxene (Ti) compositions from the lherzolites. We
used the models of critical and nonmodal melting of an
initial four�phase assemblage [18], which are based on

the calculated data on the congruent melting of unde�
pleted MORB�type lherzolite. The chemical composi�
tion of the model mantle source was taken to corre�
spond to the depleted mantle (DMM), and its mineral
composition and melting reaction were adopted from
Brunelli et al. [19]. Currently, the mineral/melt parti�
tioning of major elements is not yet fully understood.
Therefore, modeling reported in this paper (Figs. 8b,
8d) was performed for different mineral/melt partition
coefficients accounting for possible variations in the
temperature and pressure of mantle melting. The parti�
tion coefficients of titanium between clinopyroxene and

melt (  = 0.1–0.35) and spinel and melt (  =
0.048–0.15) were taken after [16, 20]. Hellebrand et al.
[21] presented empirical dependence between the
degree of mantle melting and the compositional param�
eters of coexisting spinel and clinopyroxene in the resi�
due: the contents of heavy rare earth elements (Dy, Er,
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Table 2. Mean compositions of orthopyroxene from the serpentinized lherzolites of the Stalemate Ridge; Cr# = Cr/(Cr + Al)
and Mg# = Mg/(Mg + Fe)

Component DR37�5 DR3�6 DR37�9 DR37�10 DR37�11 DR37�12 DR37�13 DR37�14 DR37�15

Number of analyses

12 29 14 19 31 28 41 42 26

SiO2 55.26 55.96 56.25 55.21 55.32 55.26 55.28 55.41 55.53

TiO2 0.02 0.05 0.02 0.03 0.03 0.02 0.03 0.04 0.03

Al2O3 4.85 3.86 4.00 4.39 4.27 4.47 4.33 4.27 4.16

Cr2O3 0.78 0.73 0.61 0.77 0.74 0.73 0.71 0.81 0.71

FeO 6.30 5.89 6.08 5.95 6.23 6.02 6.14 6.10 6.36

MnO 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13

MgO 32.93 33.20 33.19 32.99 33.06 32.89 33.17 32.89 32.52

CaO 1.01 1.30 1.10 1.44 1.23 1.41 1.15 1.30 1.27

Na2O 0.01 0.03 0.02 0.02 0.02 0.02 0.01 0.02 0.02

NiO 0.17 0.17 0.12 0.16 0.16 0.16 0.15 0.15 0.14

Total 101.46 101.31 101.37 101.09 101.19 101.13 101.09 101.13 100.87

Mg# 0.90 0.91 0.91 0.91 0.90 0.91 0.91 0.91 0.90

Cr# 0.10 0.11 0.07 0.11 0.10 0.13 0.10 0.11 0.11

Standard deviation

SiO2 0.35 0.30 0.84 0.33 0.35 0.41 0.43 0.51 0.28

TiO2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01

Al2O3 0.59 0.25 0.43 0.31 0.39 0.34 0.64 0.44 0.32

Cr2O3 0.11 0.08 0.04 0.06 0.08 0.09 0.13 0.07 0.09

FeO 0.26 0.23 0.24 0.14 0.11 0.18 0.24 0.15 0.33

MnO 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.04

MgO 0.57 0.75 1.43 0.45 0.40 0.50 0.78 0.54 0.54

CaO 0.42 0.66 0.46 0.39 0.37 0.54 0.39 0.54 0.61

Na2O 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

NiO 0.06 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.03

Total 0.41 0.24 0.36 0.28 0.25 0.31 0.40 0.59 0.49

Mg# 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

Cr# 0.01 0.01 4.87 0.00 0.01 0.17 0.01 1.17 1.01
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and Yb) in clinopyroxene and Cr# of coexisting spinel.
In such a way, an empirical relation was obtained
between the Cr# of spinel in the mantle residue and the
degree of fractional melting. The composition of the
mantle source in the established dependence was
accepted as the composition of the depleted mantle.
The degree of melting of the mantle source of the lher�
zolites of the Stalemate Fracture Zone was therefore
calculated using the equation [21]

F = 10 * ln(Cr#Sp) + 24,

where F is the degree of melting, and Cr#Sp is
Cr/(Cr + Al) in spinel.

The results of our modeling (Figs. 8b, 8d) indicate
that the observed spinel and clinopyroxene composi�
tions from the lherzolites can be explained by 10–12%
near�fractional melting of a depleted mantle source

(DMM) at  = 0.15 and  = 0.1. With respect
to the estimated parameters of formation, the lherzo�
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lites of the Stalemate Ridge are similar to the residual
peridotites of Mid�Atlantic Ridge, for instance, from
the Vema Fracture Zone of the MAR (Fig. 7). The peri�
dotites of the East Pacific Rise were produced by signif�
icantly higher degrees of mantle melting reaching ~18%
(Fig. 7).

Genesis of Dunites 

The compositions of primary minerals from the
lherzolites and dunites straddle common trends
(Fig. 8), which implies a close genetic relation between
these rocks. However, the positive correlations between
Cr# and Ti in spinel and between Cr# in spinel and Na
and Ti in clinopyroxene cannot be explained by the pro�
gressive depletion of the mantle source from lherzolite

to dunite owing to partial melting. Therefore, the com�
positions of spinel and pyroxene in the dunites and lher�
zolite sample DR37�6 strongly deviating from the
expected partial melting trends should be interpreted in
a different way. A viable model for the formation of dun�
ites in the Stalemate Fracture Zone is low�pressure
interaction of lherzolites with Na� and Ti�rich mag�
matic melts. This process could result in pyroxene dis�
solution in the lherzolite, development of reaction infil�
tration instability (refertilization), and formation of a
system of dunite channels marking melt transport paths
to the surface (Fig. 8) [3]. Thus, the dunites are consid�
ered as igneous rocks of a reaction origin affected by
fluid–magma refertilization owing to melt infiltration
through them. The lherzolite–dunite association
dredged from the Stalemate Ridge can be interpreted as
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a fragment of the oceanic lithospheric mantle consist�
ing of residual lherzolites and dunite channels.

Geochemical Constraints for the Spreading Rate
of the Kula–Pacific Paleoridge 

Bazylev and Silantyev [22] estimated variations in
Cr# of spinel and degree of partial melting as functions
of the spreading rate. In slow�spreading ridge environ�
ments (full spreading rate of up to 5.5 cm/yr), the Cr#
value of primary spinels in mantle peridotites ranges
from 0.11 to 0.45, whereas in fast�spreading ridges (with
a full spreading rate higher than 10 cm/yr), this param�
eter is 0.35–0.55. The spinel lherzolites of the Stale�
mate Fracture Zone contain moderately chromian
spinel (Cr# = 0.26–0.33) corresponding to the compo�
sitions of spinel from the peridotites of slow�spreading
ridge (Fig. 9). Using the correlation of Bazylev and
Silantyev [22], the full spreading rate during the forma�
tion of the Stalemate Ridge peridotites can be estimated
as 4–5 cm/yr. This estimate is well consistent with pale�
omagnetic observations [3], which were used to esti�
mate the full spreading rate of the ancient Kula–Pacific
Ridge as 6.5 cm/yr (approximately 2 cm/yr to the west
and 4.5 cm/yr to the east). The spreading rate of the
Kula–Pacific paleoridge estimated on the basis of
geochemical and paleomagnetic data is much lower
than that of the fast�spreading ridges of the modern
Pacific Ocean [22]. The compositions of peridotites
obtained in this study and paleomagnetic data [3] pro�
vide compelling evidence for the existence of slow�
spreading ridges in the Pacific Ocean basin in the past.

This suggests that the geodynamics of the rift zones of
the Pacific Ocean has changed considerably since
43 Ma (age of cessation of Kula–Pacific spreading).

CONCLUSIONS

The association of peridotites dredged from the
Stalemate Ridge in 2009 during cruise SO201�1b KAL�
MAR of the R/V Sonne includes serpentinized lherzo�
lites and serpentinized silicified dunites. The analysis of
coexisting relicts of primary mantle minerals in the
rocks allowed us to elucidate the genesis of these rocks
and estimate the spreading rate of the Kula–Pacific
paleoridge. The observed compositional variations of
coexisting clinopyroxene and spinel could be related to
a two�stage process of formation of these rocks. During
the first stage, 10–12% near�fractional melting of a
depleted mantle source of the DMM type produced
depleted lherzolites. During the second stage, the inter�
action of the residual lherzolites with Na� and Ti�rich
melts resulted in the formation of reaction dunites.
Thus, the protolith of the serpentinized lherzolites and
dunites of the Stalemate Fracture Zone was represented
by fragments of shallow oceanic mantle partly modified
by percolating deep melts. The results of our investiga�
tion suggest a relation of the rocks of the lherzolite–
dunite association of the Stalemate Fracture Zone with
the ancient mantle material of the Cretaceous–Paleo�
gene lithosphere of the Kula plate. The low Cr# value of
spinel from the lherzolites studied here clearly distin�
guishes these rocks from the peridotites of the East
Pacific Rise and indicates the existence of slow�spread�
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ing mid�ocean ridges in the Pacific Ocean basin during
the Cretaceous–Paleogene.
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