10 research outputs found

    Specific Subpopulations of Hypothalamic Leptin Receptor-Expressing Neurons Mediate the Effects of Early Developmental Leptin Receptor Deletion on Energy Balance

    Get PDF
    ACKNOWLEDGEMENTS We thank MedImmune, Inc. and James Trevaskis, PhD and Christopher Rhodes, PhD for the gift of leptin. We thank members of the Myers and Olson labs for helpful discussions. Research support was provided by the Michigan Diabetes Research Center (NIH P3 0 DK020572, including the Molecular Genetics, Animal Phenotyping, and Clinical Cores), the American Diabetes Association (MGM), the Marilyn H. Vincent Foundation (MGM), the NIH (MGM: D K05673 1; ACR:DK071212; MBA: DK097861), the BBSRC (LKH: BB/NO17838/1) and WellcomeTrust (LKH: 098012).Peer reviewedPublisher PD

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Central Nervous System Control of Glucose Homeostasis: A Therapeutic Target for Type 2 Diabetes?

    No full text
    Historically, pancreatic islet beta cells have been viewed as principal regulators of glycemia, with type 2 diabetes (T2D) resulting when insulin secretion fails to compensate for peripheral tissue insulin resistance. However, glycemia is also regulated by insulin-independent mechanisms that are dysregulated in T2D. Based on evidence supporting its role both in adaptive coupling of insulin secretion to changes in insulin sensitivity and in the regulation of insulin-independent glucose disposal, the central nervous system (CNS) has emerged as a fundamental player in glucose homeostasis. Here, we review and expand upon an integrative model wherein the CNS, together with the islet, establishes and maintains the defended level of glycemia. We discuss the implications of this model for understanding both normal glucose homeostasis and T2D pathogenesis and highlight centrally targeted therapeutic approaches with the potential to restore normoglycemia to patients with T2D

    Leptin receptor neurons in the dorsomedial hypothalamus regulate diurnal patterns of feeding, locomotion, and metabolism

    No full text
    The brain plays an essential role in driving daily rhythms of behavior and metabolism in harmony with environmental light-dark cycles. Within the brain, the dorsomedial hypothalamic nucleus (DMH) has been implicated in the integrative circadian control of feeding and energy homeostasis, but the underlying cell types are unknown. Here, we identify a role for DMH leptin receptor-expressing (DMH) neurons in this integrative control. Using a viral approach, we show that silencing neurotransmission in DMH neurons in adult mice not only increases body weight and adiposity but also phase-advances diurnal rhythms of feeding and metabolism into the light cycle and abolishes the normal increase in dark-cycle locomotor activity characteristic of nocturnal rodents. Finally, DMH-silenced mice fail to entrain to a restrictive change in food availability. Together, these findings identify DMH neurons as critical determinants of the daily time of feeding and associated metabolic rhythms

    Distinct Neuronal Projections from the Hypothalamic Ventromedial Nucleus Mediate Glycemic and Behavioral Effects

    No full text
    The hypothalamic ventromedial nucleus (VMN) is implicated both in autonomic control of blood glucose and in behaviors including fear and aggression, but whether these divergent effects involve the same or distinct neuronal subsets and their projections is unknown. To address this question, we used an optogenetic approach to selectively activate the subset of VMN neurons that express neuronal nitric oxide synthase 1 (VMN(NOS1) neurons) implicated in glucose counterregulation. We found that photo-activation of these neurons elicits 1) robust hyperglycemia achieved by activation of counterregulatory responses (CRRs) usually reserved for the physiological response to hypoglycemia, and 2) defensive immobility behavior. Moreover, we show that the glucagon, but not corticosterone, response to insulin-induced hypoglycemia is blunted by photo-inhibition of the same neurons. To investigate the neurocircuitry by which VMN(NOS1) neurons mediate these effects, and to determine whether these diverse effects are dissociable from one another, we activated downstream VMN(NOS1) projections in either the anterior bed nucleus of the stria terminalis (aBNST) or the periaqueductal gray (PAG). While glycemic responses are fully recapitulated by activation of VMN(NOS1) projections to the aBNST, freezing immobility occurred only upon activation of VMN(NOS1) terminals in the PAG. These findings support previous evidence of a VMN--\u3eaBNST neurocircuit involved in glucose counterregulation and demonstrate that activation of VMN(NOS1) neuronal projections supplying the PAG robustly elicits defensive behaviors

    Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission

    No full text
    In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced \u3e79,000 single-cell transcriptomes from the hypothalamus of diabetic Lep mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling

    Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission

    No full text
    In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced \u3e79,000 single-cell transcriptomes from the hypothalamus of diabetic Lep mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling

    The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population

    No full text

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore